Gomez Andrew R, Byun Hyae Ran, Wu Shaogen, Muhammad Akm Ghulam, Ikbariyeh Jasmine, Chen Jaelin, Muro Alek, Li Lin, Bernstein Kenneth E, Ainsworth Richard, Tourtellotte Warren G
bioRxiv. 2024 May 21:2024.04.24.590837. doi: 10.1101/2024.04.24.590837.
Genome-wide association studies (GWAS) have identified many gene polymorphisms associated with an increased risk of developing Late Onset Alzheimer's Disease (LOAD). Many of these LOAD risk-associated alleles alter disease pathogenesis by influencing microglia innate immune responses and lipid metabolism. Angiotensin Converting Enzyme (ACE), a GWAS LOAD risk-associated gene best known for its role in regulating systemic blood pressure, also enhances innate immunity and lipid processing in peripheral myeloid cells, but a role for ACE in modulating the function of myeloid-derived microglia remains unexplored. Using novel mice engineered to express ACE in microglia and CNS associated macrophages (CAMs), we find that ACE expression in microglia reduces Aβ plaque load, preserves vulnerable neurons and excitatory synapses, and greatly reduces learning and memory abnormalities in the 5xFAD amyloid mouse model of Alzheimer's Disease (AD). ACE-expressing microglia show enhanced Aβ phagocytosis and endolysosomal trafficking, increased clustering around amyloid plaques, and increased SYK tyrosine kinase activation downstream of the major Aβ receptors, TREM2 and CLEC7A. Single microglia sequencing and digital spatial profiling identifies downstream SYK signaling modules that are expressed by ACE expression in microglia that mediate endolysosomal biogenesis and trafficking, mTOR and PI3K/AKT signaling, and increased oxidative phosphorylation, while gene silencing or pharmacologic inhibition of SYK activity in ACE-expressing microglia abrogates the potentiated Aβ engulfment and endolysosomal trafficking. These findings establish a role for ACE in enhancing microglial immune function and they identify a potential use for ACE-expressing microglia as a cell-based therapy to augment endogenous microglial responses to Aβ in AD.
全基因组关联研究(GWAS)已经确定了许多与晚发性阿尔茨海默病(LOAD)发病风险增加相关的基因多态性。其中许多与LOAD风险相关的等位基因通过影响小胶质细胞的固有免疫反应和脂质代谢来改变疾病的发病机制。血管紧张素转换酶(ACE)是一种与GWAS LOAD风险相关的基因,因其在调节全身血压中的作用而最为人所知,它还能增强外周髓样细胞的固有免疫和脂质处理能力,但ACE在调节髓样来源的小胶质细胞功能方面的作用仍未被探索。通过构建在小胶质细胞和中枢神经系统相关巨噬细胞(CAMs)中表达ACE的新型小鼠,我们发现小胶质细胞中ACE的表达降低了Aβ斑块负荷,保护了易损神经元和兴奋性突触,并大大减少了阿尔茨海默病(AD)的5xFAD淀粉样小鼠模型中的学习和记忆异常。表达ACE的小胶质细胞显示出增强的Aβ吞噬作用和内溶酶体运输,在淀粉样斑块周围的聚集增加,以及主要Aβ受体TREM2和CLEC7A下游的SYK酪氨酸激酶激活增加。单细胞小胶质细胞测序和数字空间分析确定了下游SYK信号模块,这些模块由小胶质细胞中ACE的表达所表达,介导内溶酶体生物发生和运输、mTOR和PI3K/AKT信号传导,以及增加氧化磷酸化,而在表达ACE的小胶质细胞中基因沉默或药理学抑制SYK活性则消除了增强的Aβ吞噬和内溶酶体运输。这些发现确定了ACE在增强小胶质细胞免疫功能中的作用,并确定了表达ACE的小胶质细胞作为一种基于细胞的疗法的潜在用途,以增强内源性小胶质细胞对AD中Aβ的反应。