Umar M D, Hariyanto H L, Absor M A U
Department of Physics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
Department of Mathematics and Information Technology, Institut Teknologi Kalimantan, Jl. Soekarno Hatta KM 15, Balikpapan 76127, Indonesia.
Rev Sci Instrum. 2024 May 1;95(5). doi: 10.1063/5.0156751.
We present a three-dimensional pseudo-Voigt function to analyze muon spin relaxation (μSR) in weakly magnetic materials. Our approach approximates the Voigt function by superimposing Gaussian and Lorentzian functions using a one-dimensional method proposed by Di Rocco and Cruzado [Acta Phys. Pol., A 122, 666 (2012)]. We derive the peak of the Voigt function analytically and express the Half Width at Half Maximum (HWHM) of the Voigt function as a function of the HWHMs of the Gaussian and Lorentzian functions. We compare the pseudo-Voigt function to the exact Voigt function and find a maximum normalized discrepancy of ∼20% at the tail of the distribution function, depending on the ratio of Lorentzian to Gaussian HWHMs and internal magnetic field. We apply the derived three-dimensional pseudo-Voigt function to calculate μSR functions for zero- and longitudinal-field experiments and use them to fit μSR time spectra of La2-xSrxCuO4 with 2.4% Sr, employing a strong collision model with the static-based pseudo-Voigt muon spin relaxation function as the initial condition. Our results show that the Gaussian- and Lorentzian-fitted parameters and fluctuation rate are in good agreement with results from the exact Voigt function for a temperature range of 30-200 K, with the deviation of Gaussian and Lorentzian width parameters reaching ∼0.15 G below 30 K.
我们提出了一种三维伪沃伊特函数,用于分析弱磁性材料中的μ子自旋弛豫(μSR)。我们的方法采用迪·罗科和克鲁扎多 [《物理学报,A辑》122, 666 (2012)] 提出的一维方法,通过叠加高斯函数和洛伦兹函数来近似沃伊特函数。我们解析推导了沃伊特函数的峰值,并将沃伊特函数的半高宽(HWHM)表示为高斯函数和洛伦兹函数半高宽的函数。我们将伪沃伊特函数与精确的沃伊特函数进行比较,发现取决于洛伦兹函数与高斯函数半高宽的比值以及内磁场,在分布函数尾部的最大归一化差异约为20%。我们应用推导得到的三维伪沃伊特函数来计算零场和纵向场实验的μSR函数,并使用它们拟合含2.4% Sr的La2-xSrxCuO4的μSR时间谱,采用基于静态的伪沃伊特μ子自旋弛豫函数作为初始条件的强碰撞模型。我们的结果表明,在30 - 200 K的温度范围内,高斯函数和洛伦兹函数拟合参数以及涨落率与精确沃伊特函数的结果吻合良好,在30 K以下高斯函数和洛伦兹函数宽度参数的偏差达到约0.15 G。