Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
J Pathol. 2024 Jul;263(3):315-327. doi: 10.1002/path.6284. Epub 2024 May 9.
Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.
溶血导致的急性肾损伤 (AKI) 归因于血红素介导的近端肾小管上皮细胞 (PTEC) 损伤和由于管腔内蛋白浓缩导致的管状铸型形成。巨球蛋白是 PTEC 中蛋白质、肽和药物的多配体内吞受体,并介导游离血红蛋白和血红素清除蛋白 α-微球蛋白的摄取。然而,巨球蛋白如何参与溶血导致的 AKI 的发展仍不清楚。在这里,我们研究了巨球蛋白相关的溶血诱导 AKI 的发病机制和使用克拉维酸作为巨球蛋白阻断剂的治疗策略。在肾特异性嵌合巨球蛋白敲除 (MegKO) 小鼠中开发的苯肼诱导的溶血模型证实了巨球蛋白依赖性 PTEC 损伤,这是通过肾损伤分子-1 (KIM-1) 的共表达揭示的。在肾特异性条件性 MegKO 小鼠的溶血模型中,血红蛋白和 α-微球蛋白的摄取以及 PTEC 中的 KIM-1 表达受到抑制,但管状铸型形成增加,可能是由于 PTEC 中蛋白质重吸收的非选择性抑制所致。石英晶体微天平分析表明克拉维酸抑制了巨球蛋白与血红蛋白和 α-微球蛋白的结合。克拉维酸还抑制了巨球蛋白表达的大鼠卵黄囊肿瘤衍生的 L2 细胞对荧光血红蛋白的特异性摄取。在溶血诱导的 AKI 小鼠模型中,重复给予克拉维酸通过抑制血红蛋白和 α-微球蛋白的摄取来抑制 PTEC 损伤,并防止铸型形成。另一种血红素清除蛋白血影蛋白也被发现是巨球蛋白的一种新配体,克拉维酸抑制了其在溶血模型中与巨球蛋白的结合和 PTEC 的摄取。基于质谱的半定量分析克拉维酸处理的 C57BL/6J 小鼠的尿蛋白表明,克拉维酸抑制了 PTEC 中巨球蛋白配体的有限数量的重吸收,包括 α-微球蛋白和血影蛋白。总之,克拉维酸介导的选择性巨球蛋白阻断是一种有效的治疗策略,可防止溶血诱导的 AKI 中血红素介导的 PTEC 损伤和铸型形成。