Zhang Zhao-Yang, Dong Dongfang, Bösking Tom, Dang Tongtong, Liu Chunhao, Sun Wenjin, Xie Mingchen, Hecht Stefan, Li Tao
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
Angew Chem Int Ed Engl. 2024 Jul 29;63(31):e202404528. doi: 10.1002/anie.202404528. Epub 2024 Jun 30.
Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.
天然光活性系统已经进化到能够利用太阳辐射中的广谱光来实现诸如光感知和光合能量转换等关键功能。分子光开关在吸收光时会发生结构变化,是广泛用于开发光响应系统和光能转换的人工光活性工具。然而,光开关通常需要特定窄波长范围的光来激活才能实现有效的光转换,这限制了它们在阳光下直接工作以及高效收集太阳能的能力。在此,我们聚焦于研究最为广泛的偶氮光开关,展示了在未过滤的阳光下光转换超过80%的有效的太阳能E→Z光异构化。这些由阳光驱动的偶氮光开关是通过使E异构体在从紫外到可见的宽光谱范围内的吸收远强于Z异构体而开发的。这种不寻常的光谱分布类型是通过一种简单但高度可调节的分子设计策略实现的,能够对光谱窗口进行微调,使光吸收扩展到600 nm以上。值得注意的是,在不损害正向太阳能异构化的情况下可以实现反向光转换,从而产生独特的光可逆太阳能开关。光开关这种特殊的太阳能化学为开发可持续的光驱动系统和高效太阳能技术提供了前所未有的机会。