文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非多孔 pH 响应性抗体纳米颗粒的计算设计。

Computational design of non-porous pH-responsive antibody nanoparticles.

机构信息

Institute for Protein Design, University of Washington, Seattle, WA, USA.

Department of Biochemistry, University of Washington, Seattle, WA, USA.

出版信息

Nat Struct Mol Biol. 2024 Sep;31(9):1404-1412. doi: 10.1038/s41594-024-01288-5. Epub 2024 May 9.


DOI:10.1038/s41594-024-01288-5
PMID:38724718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11402598/
Abstract

Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and is important for targeted delivery of biologics. Here we describe the design of octahedral non-porous nanoparticles with a targeting antibody on the two-fold symmetry axis, a designed trimer programmed to disassemble below a tunable pH transition point on the three-fold axis, and a designed tetramer on the four-fold symmetry axis. Designed non-covalent interfaces guide cooperative nanoparticle assembly from independently purified components, and a cryo-EM density map closely matches the computational design model. The designed nanoparticles can package protein and nucleic acid payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between 5.9 and 6.7. The ability to incorporate almost any antibody into a non-porous pH-dependent nanoparticle opens up new routes to antibody-directed targeted delivery.

摘要

设计对环境条件变化做出响应的蛋白质纳米材料是目前蛋白质设计的一个挑战,对于生物制剂的靶向递送非常重要。在这里,我们描述了具有靶向抗体在二倍对称轴上的八面体无孔纳米颗粒的设计,设计的三聚体在三倍对称轴上的可调 pH 转换点以下编程为解组装,以及在四倍对称轴上的设计四聚体。设计的非共价界面指导从独立纯化的组件进行协同纳米颗粒组装,并且冷冻电镜密度图与计算设计模型非常吻合。设计的纳米颗粒可以包装蛋白质和核酸有效负载,在抗体介导的细胞表面受体靶向作用后被内吞,并在 pH 值在 5.9 到 6.7 之间的可调 pH 依赖性解组装。将几乎任何抗体纳入无孔 pH 依赖性纳米颗粒的能力为抗体导向的靶向递开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e0f6e7c8a673/41594_2024_1288_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/30c6441b0d48/41594_2024_1288_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/858b7276a5c4/41594_2024_1288_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e1d2bf4ded71/41594_2024_1288_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/1d3fd487d434/41594_2024_1288_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/0b89f12c4adb/41594_2024_1288_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/a475db5d8295/41594_2024_1288_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/dc4da0205dc4/41594_2024_1288_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/2f5f8d76be7a/41594_2024_1288_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/5fbfc0b2d263/41594_2024_1288_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/b95c86497a7b/41594_2024_1288_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e4657ce55bb6/41594_2024_1288_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/d8b36e0d473b/41594_2024_1288_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/bf3a0df074bb/41594_2024_1288_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/8185b4ff4a26/41594_2024_1288_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e0f6e7c8a673/41594_2024_1288_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/30c6441b0d48/41594_2024_1288_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/858b7276a5c4/41594_2024_1288_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e1d2bf4ded71/41594_2024_1288_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/1d3fd487d434/41594_2024_1288_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/0b89f12c4adb/41594_2024_1288_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/a475db5d8295/41594_2024_1288_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/dc4da0205dc4/41594_2024_1288_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/2f5f8d76be7a/41594_2024_1288_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/5fbfc0b2d263/41594_2024_1288_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/b95c86497a7b/41594_2024_1288_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e4657ce55bb6/41594_2024_1288_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/d8b36e0d473b/41594_2024_1288_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/bf3a0df074bb/41594_2024_1288_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/8185b4ff4a26/41594_2024_1288_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad3/11402783/e0f6e7c8a673/41594_2024_1288_Fig15_ESM.jpg

相似文献

[1]
Computational design of non-porous pH-responsive antibody nanoparticles.

Nat Struct Mol Biol. 2024-9

[2]
Computational design of non-porous, pH-responsive antibody nanoparticles.

bioRxiv. 2023-4-18

[3]
Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment.

Acta Biomater. 2017-11-7

[4]
De novo design of pH-responsive self-assembling helical protein filaments.

Nat Nanotechnol. 2024-7

[5]
Polyelectrolyte complex templated synthesis of monodisperse, sub-100 nm porous silica nanoparticles for cancer targeted and stimuli-responsive drug delivery.

J Colloid Interface Sci. 2021-2-15

[6]
Specific cellular internalization and pH-responsive behavior of doxorubicin loaded PLGA-PEG nanoparticles targeted with anti EGFRvIII antibody.

Life Sci. 2020-8-28

[7]
Tumor pH-functionalized and charge-tunable nanoparticles for the nucleus/cytoplasm-directed delivery of oxaliplatin and miRNA in the treatment of head and neck cancer.

Acta Biomater. 2022-11

[8]
Electrostatic-triggered exothermic antibody adsorption to the cellulose nanoparticles.

Anal Biochem. 2021-11-1

[9]
Fabrication of SnO2/porous silica/polyethyleneimine nanoparticles for pH-responsive drug delivery.

Mater Sci Eng C Mater Biol Appl. 2016-2

[10]
Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs.

ACS Appl Mater Interfaces. 2016-3

引用本文的文献

[1]
From sequence to scaffold: computational design of protein nanoparticle vaccines from AlphaFold2-predicted building blocks.

bioRxiv. 2025-8-20

[2]
Computational design of bifaceted protein nanomaterials.

Nat Mater. 2025-7-31

[3]
Engineering encapsulin nanocages for drug delivery.

Mater Adv. 2025-7-18

[4]
Exploring Use of a Protein Cage System for Producing Bioactive Peptides in Escherichia coli.

Microb Biotechnol. 2025-6

[5]
Nonviral protein cages as tools to decipher and combat viral threats.

Npj Viruses. 2025-5-26

[6]
Massively parallel assessment of designed protein solution properties using mass spectrometry and peptide barcoding.

bioRxiv. 2025-2-28

[7]
Antibody-Nanoparticle Conjugates in Therapy: Combining the Best of Two Worlds.

Small. 2025-4

[8]
Local structural flexibility drives oligomorphism in computationally designed protein assemblies.

Nat Struct Mol Biol. 2025-2-26

[9]
Design of high-affinity binders to immune modulating receptors for cancer immunotherapy.

Nat Commun. 2025-2-26

[10]
Modular Calcium-Responsive and CD9-Targeted Phospholipase System Enhancing Endosomal Escape for DNA Delivery.

Adv Sci (Weinh). 2025-4

本文引用的文献

[1]
Fast and versatile sequence-independent protein docking for nanomaterials design using RPXDock.

PLoS Comput Biol. 2023-5

[2]
IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein.

Sci Immunol. 2022-12-9

[3]
Yeast Display Guided Selection of pH-Dependent Binders.

Methods Mol Biol. 2022

[4]
Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins.

Cell. 2022-1-20

[5]
Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs.

Exp Mol Med. 2021-10

[6]
Engineered pegRNAs improve prime editing efficiency.

Nat Biotechnol. 2022-3

[7]
Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system.

Synth Syst Biotechnol. 2021-9-9

[8]
Lipid nanoparticles for mRNA delivery.

Nat Rev Mater. 2021

[9]
Bioengineered Ferritin Nanocarriers for Cancer Therapy.

Int J Mol Sci. 2021-6-29

[10]
Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers.

Nat Commun. 2021-6-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索