Suppr超能文献

论黏弹性与软生物组织中水分子扩散的关系。

On the relationship between viscoelasticity and water diffusion in soft biological tissues.

机构信息

Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany.

Faculty of Medicine, Otto von Guericke University Magdeburg, Germany.

出版信息

Acta Biomater. 2024 Jul 1;182:42-53. doi: 10.1016/j.actbio.2024.05.007. Epub 2024 May 9.

Abstract

Magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI) are complementary imaging techniques that detect disease based on viscoelasticity and water mobility, respectively. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering the clinical translation of combined DWI-MRE markers. We used DWI-MRE to study 129 biomaterial samples including native and cross-linked collagen, glycosaminoglycans (GAGs) with different sulfation levels, and decellularized specimens of pancreas and liver, all with different proportions of solid tissue, or solid fractions. We developed a theoretical framework of the relationship between mechanical loss and tissue-water mobility based on two parameters, solid and fluid viscosity. These parameters revealed distinct DWI-MRE property clusters characterizing weak, moderate, and strong water-network interactions. Sparse networks interacting weakly with water, such as collagen or diluted decellularized tissue, resulted in marginal changes in water diffusion over increasing solid viscosity. In contrast, dense networks with larger solid fractions exhibited both free and hindered water diffusion depending on the polarity of the solid components. For example, polar and highly sulfated GAGs as well as native soft tissues hindered water diffusion despite relatively low solid viscosity. Our results suggest that two fundamental properties of tissue networks, solid fraction and network polarity, critically influence solid and fluid viscosity in biological tissues. Since clinical DWI and MRE are sensitive to these viscosity parameters, the framework we present here can be used to detect tissue remodeling and architectural changes in the setting of diagnostic imaging. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of biological tissues provide a wealth of information on the vital state of cells and host matrix. Combined measurement of viscoelasticity and water diffusion by medical imaging is sensitive to tissue microarchitecture. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering full exploitation of these properties as a combined clinical biomarker. Therefore, we analyzed the parameter space accessible by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) and developed a theoretical framework for the relationship between water mobility and mechanical parameters in biomaterials. Our theory of solid material properties related to particle motion can be translated to clinical radiology using clinically established MRE and DWI.

摘要

磁共振弹性成像(MRE)和弥散加权成像(DWI)是两种互补的成像技术,分别基于粘弹性和水流动性来检测疾病。然而,粘弹性和水扩散之间的关系仍未被充分理解,这阻碍了联合 DWI-MRE 标志物的临床转化。我们使用 DWI-MRE 研究了 129 种生物材料样本,包括天然和交联的胶原蛋白、具有不同硫酸化水平的糖胺聚糖(GAGs)以及去细胞化的胰腺和肝脏标本,所有样本的固体组织或固体分数比例不同。我们基于两个参数(固体和流体粘度),开发了一个关于机械损耗与组织水流动性之间关系的理论框架。这些参数揭示了特征性的 DWI-MRE 属性簇,这些属性簇可以区分弱、中、强水网络相互作用。与水弱相互作用的稀疏网络,如胶原蛋白或稀释的去细胞组织,在固体粘度增加时,水扩散的变化很小。相比之下,具有较大固体分数的密集网络会根据固体成分的极性表现出自由和受阻的水扩散。例如,极性和高度硫酸化的 GAGs 以及天然软组织尽管固体粘度相对较低,但仍会阻碍水扩散。我们的结果表明,组织网络的两个基本特性,即固体分数和网络极性,会显著影响生物组织中的固体和流体粘度。由于临床 DWI 和 MRE 对这些粘度参数敏感,因此我们在此提出的框架可用于在诊断成像中检测组织重塑和结构变化。

意义

生物组织的粘弹性特性提供了大量关于细胞和宿主基质活力状态的信息。医学成像对粘弹性和水扩散的联合测量对组织微观结构敏感。然而,粘弹性和水扩散之间的关系仍未被充分理解,阻碍了将这些特性充分作为联合临床生物标志物进行开发。因此,我们分析了弥散加权成像(DWI)和磁共振弹性成像(MRE)可测量的参数空间,并为生物材料中水流动性和机械参数之间的关系建立了一个理论框架。我们关于与颗粒运动相关的固体材料特性的理论可以通过使用临床建立的 MRE 和 DWI 转化为临床放射学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验