Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland.
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
Molecules. 2024 Apr 23;29(9):1919. doi: 10.3390/molecules29091919.
Fullerenes, particularly C, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.
富勒烯,特别是 C 型富勒烯,具有独特的性质,使其成为各种应用的有前途的候选者,包括药物传递和纳米医学。然而,它们与生物分子,特别是蛋白质的相互作用仍不完全清楚。本研究将显式和隐式 C 模型应用于 UNRES 粗粒化力场中,无需使用约束来稳定蛋白质结构即可研究富勒烯-蛋白质相互作用。UNRES 力场提供了计算效率,允许进行更长时间尺度的模拟,同时保持准确性。研究了五种模型蛋白:FK506 结合蛋白、HIV-1 蛋白酶、肠脂肪酸结合蛋白、PCB 结合蛋白和鸡卵清溶菌酶。进行了有和没有 C 的分子动力学模拟,以评估蛋白质稳定性并研究富勒烯相互作用的影响。接触概率分析揭示了每种蛋白质的独特相互作用模式。FK506 结合蛋白(1FKF)显示出特定的结合位点,而肠脂肪酸结合蛋白(1ICN)和尿促球蛋白(1UTR)则表现出更广泛的相互作用。显式 C 模型在预测蛋白质灵活性、C 在结合口袋中的位置以及有效结合能的估算方面与全原子模拟具有很好的一致性。显式和隐式 C 模型与 UNRES 力场的集成,结合粗粒化建模和多尺度方法的最新进展,为在生物学相关尺度上研究蛋白质-纳米颗粒相互作用提供了一个强大的框架,而无需使用约束来稳定蛋白质,从而允许发生大的构象变化。这些计算工具与实验技术相结合,可以帮助理解纳米颗粒-生物分子相互作用的机制和后果,指导用于生物医学应用的纳米材料的设计。