Institute of Experimental Physics, Faculty of Mathematics, Physics, and Informatics, University of Gdansk, ul. Wita Stwosza 57, 80-308 Gdańsk, Poland.
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland.
Int J Mol Sci. 2024 Apr 28;25(9):4804. doi: 10.3390/ijms25094804.
Molecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic field, often employs hazardous substances in analyzing friction ridges on porous surfaces, posing safety concerns. In response, we formulated novel, non-toxic procedures for examining paper evidence, particularly thermal papers. Our laboratory model utilizes a polyvinyl alcohol polymer as a rigid matrix to emulate the thermal paper's environment, enabling precise control over the spectroscopic characteristics of 1,8-diazafluoro-9-one (DFO). We identified and analyzed the cyclodimer 1,8-diazafluoren-9-one (DAK DFO), which is a non-toxic and biocompatible alternative for revealing forensic marks. The reagents used to preserve fingerprints were optimized for their effectiveness and stability. Using stationary absorption and emission spectroscopy, along with time-resolved emission studies, we verified the spectroscopic attributes of the new structures under deliberate aggregation conditions. Raman spectroscopy and quantum mechanical computations substantiated the cyclodimer's configuration. The investigation provides robust scientific endorsement for the novel compound and its structural diversity, influenced by the solvatochromic sensitivity of the DFO precursor. Our approach to monitoring aggregation processes signifies a substantial shift in synthetic research paradigms, leveraging simple chemistry to yield an innovative contribution to forensic science methodologies.
分子物理学在医学、制药和更广泛的工业应用等领域中起着关键作用。本研究旨在提高在分子水平上生产具有独特光谱特性的特定光学活性材料的方法,这些材料对这些领域至关重要,同时在生产和应用中优先考虑人类安全。法医学是一个重要的社会经济领域,在分析多孔表面上的摩擦脊时经常使用危险物质,这引发了安全问题。因此,我们制定了新的无毒程序来检查纸质证据,特别是热敏纸。我们的实验室模型使用聚乙烯醇聚合物作为刚性基质来模拟热敏纸的环境,从而可以精确控制 1,8-二氮杂氟-9-酮(DFO)的光谱特性。我们鉴定并分析了环二聚体 1,8-二氮杂氟烯-9-酮(DAK DFO),它是一种无毒且生物相容的替代品,可用于揭示法医痕迹。优化了用于保存指纹的试剂的有效性和稳定性。我们使用固定吸收和发射光谱以及时间分辨发射研究,在故意聚集条件下验证了新结构的光谱属性。拉曼光谱和量子力学计算证实了环二聚体的结构。这项研究为新型化合物及其结构多样性提供了强有力的科学支持,这受到 DFO 前体的溶剂化敏感性的影响。我们监测聚集过程的方法标志着合成研究范式的重大转变,利用简单的化学方法为法医学方法学做出了创新贡献。