Suppr超能文献

基于超声导波的混沌振子柯尔莫哥洛夫熵铁路缺陷检测

Rail Flaw Detection via Kolmogorov Entropy of Chaotic Oscillator Based on Ultrasonic Guided Waves.

作者信息

Zeng Ziyan, Wu Jing, Zheng Mingfang, Ma Hongwei

机构信息

School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China.

School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China.

出版信息

Sensors (Basel). 2024 Apr 25;24(9):2730. doi: 10.3390/s24092730.

Abstract

Ultrasonic guided wave (UGW) inspection is an emerging non-destructive testing(NDT) technique for rail flaw detection, where weak UGW signals under strong noise backgrounds are difficult to detect. In this study, a UGW signal identification model based on a chaotic oscillator is established. The approach integrates the UGW response into the critical state of the Duffing system to serve as a disturbance control variable. By evaluating the system's motion state before and after introducing the UGW response, identification of UGW signals can be realized. Thus, the parameters defining the critical state of Duffing oscillators are determined by Ke. Moreover, an electromagnetic transducer was specifically devised to enable unidirectional excitation for UGWs targeted at both the rail base and rail head. Experimental studies showed that the proposed methodology effectively detected and located a 0.46 mm notch at the rail base and a 1.78 mm notch at the rail head. Furthermore, Ke was directly proportional to the notch size, which could be used as a quantitative index to characterize the rail flaw.

摘要

超声导波(UGW)检测是一种新兴的用于铁路探伤的无损检测(NDT)技术,在强噪声背景下,微弱的UGW信号难以检测。在本研究中,建立了一种基于混沌振荡器的UGW信号识别模型。该方法将UGW响应集成到杜芬系统的临界状态,作为扰动控制变量。通过评估引入UGW响应前后系统的运动状态,可实现UGW信号的识别。因此,定义杜芬振荡器临界状态的参数由Ke确定。此外,专门设计了一种电磁换能器,以实现对轨底和轨头的UGW进行单向激励。实验研究表明,所提出的方法有效地检测并定位了轨底处0.46毫米的缺口和轨头处1.78毫米的缺口。此外,Ke与缺口尺寸成正比,可作为表征铁路缺陷的定量指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c5/11086336/6738c236dc58/sensors-24-02730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验