Suppr超能文献

通过双配位氮空位缺陷工程在铟单原子催化剂上积累长寿命光生空穴以增强光催化氧化

Accumulation of Long-Lived Photogenerated Holes at Indium Single-Atom Catalysts via Two Coordinate Nitrogen Vacancy Defect Engineering for Enhanced Photocatalytic Oxidation.

作者信息

Zhang Jingjing, Yang Xuan, Xu Guofang, Biswal Basanta Kumar, Balasubramanian Rajasekhar

机构信息

Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.

出版信息

Adv Mater. 2024 Jul;36(28):e2309205. doi: 10.1002/adma.202309205. Epub 2024 May 22.

Abstract

Visible-light-driven photocatalytic oxidation by photogenerated holes has immense potential for environmental remediation applications. While the electron-mediated photoreduction reactions are often at the spotlight, active holes possess a remarkable oxidation capacity that can degrade recalcitrant organic pollutants, resulting in nontoxic byproducts. However, the random charge transfer and rapid recombination of electron-hole pairs hinder the accumulation of long-lived holes at the reaction center. Herein, a novel method employing defect-engineered indium (In) single-atom photocatalysts with nitrogen vacancy (Nv) defects, dispersed in carbon nitride foam (In-Nv-CNF), is reported to overcome these challenges and make further advances in photocatalysis. This Nv defect-engineered strategy produces a remarkable extension in the lifetime and an increase in the concentration of photogenerated holes in In-Nv-CNF. Consequently, the optimized In-Nv-CNF demonstrates a remarkable 50-fold increase in photo-oxidative degradation rate compared to pristine CN, effectively breaking down two widely used antibiotics (tetracycline and ciprofloxacin) under visible light. The contaminated water treated by In-Nv-CNF is completely nontoxic based on the growth of Escherichia coli. Structural-performance correlations between defect engineering and long-lived hole accumulation in In-Nv-CNF are established and validated through experimental and theoretical agreement. This work has the potential to elevate the efficiency of overall photocatalytic reactions from a hole-centric standpoint.

摘要

通过光生空穴进行的可见光驱动光催化氧化在环境修复应用中具有巨大潜力。虽然电子介导的光还原反应常常备受关注,但活性空穴具有显著的氧化能力,能够降解难降解有机污染物,产生无毒副产物。然而,电子-空穴对的随机电荷转移和快速复合阻碍了长寿命空穴在反应中心的积累。在此,报道了一种新颖的方法,即采用具有氮空位(Nv)缺陷的缺陷工程化铟(In)单原子光催化剂,将其分散在氮化碳泡沫(In-Nv-CNF)中,以克服这些挑战并在光催化方面取得进一步进展。这种Nv缺陷工程策略显著延长了In-Nv-CNF中光生空穴的寿命并提高了其浓度。因此,优化后的In-Nv-CNF与原始CN相比,光氧化降解速率显著提高了50倍,能够在可见光下有效分解两种广泛使用的抗生素(四环素和环丙沙星)。基于大肠杆菌的生长情况,经In-Nv-CNF处理的污染水完全无毒。通过实验和理论的一致性,建立并验证了In-Nv-CNF中缺陷工程与长寿命空穴积累之间的结构-性能关系。这项工作有潜力从以空穴为中心的角度提高整体光催化反应的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验