IEEE Trans Biomed Eng. 2024 Oct;71(10):2889-2899. doi: 10.1109/TBME.2024.3400274. Epub 2024 Sep 19.
OBJECTIVE: Magnetic Particle Imaging (MPI) is a radiation-free tracer-based imaging technology that visualizes the spatial distribution of superparamagnetic iron oxide nanoparticles. Conventional spatial encoding methods in MPI rely on a gradient magnetic field with a constant gradient strength to generate a field-free point or line for spatial scanning. However, increasing the gradient strength can enhance theoretical spatial resolution but also lead to a decrease in the Signal-to-Noise Ratio (SNR) and sensitivity of the imaging system. This poses a technical challenge in balancing spatial resolution and sensitivity, necessitating intricate hardware design. METHODS: To address this, we present a Space-Specific Mixing Excitation (SSME) technique for achieving high-SNR spatial encoding in MPI. By utilizing a dual-frequency excitation magnetic field with a non-homogeneous field strength, magnetic particles at each position generate unique intermodulation responses. By performing multi-channel acquisitions across the entire field of view, high SNR MPI signals can be acquired. When combined with reconstruction techniques based on system matrix, multi-dimensional SSME-MPI can be achieved. RESULTS: The effectiveness of the proposed method was validated through phantom and in vivo imaging experiments. The results demonstrate significant improvements in sensitivity (3.6-fold improvement) and spatial resolution (better than 1 mm) without any hardware modifications. CONCLUSION: These findings demonstrate the capability of SSME to enhance both the spatial resolution and sensitivity of MPI. SIGNIFICANCE: This method provides a solution to the ongoing challenge of balancing spatial resolution and sensitivity in MPI, potentially facilitating the implementation of MPI in a wider range of medical applications.
目的:磁共振粒子成像(MPI)是一种基于示踪剂的无辐射成像技术,可可视化超顺磁氧化铁纳米粒子的空间分布。MPI 中的传统空间编码方法依赖于具有恒定梯度强度的梯度磁场来产生用于空间扫描的无磁场点或线。然而,增加梯度强度可以提高理论空间分辨率,但也会导致成像系统的信噪比(SNR)和灵敏度下降。这在平衡空间分辨率和灵敏度方面带来了技术挑战,需要复杂的硬件设计。
方法:为了解决这个问题,我们提出了一种用于实现 MPI 中高 SNR 空间编码的空间特定混合激励(SSME)技术。通过使用具有不均匀场强的双频激励磁场,每个位置的磁粒子会产生独特的互调响应。通过在整个视场中进行多通道采集,可以获取具有高 SNR 的 MPI 信号。当与基于系统矩阵的重建技术结合使用时,可以实现多维 SSME-MPI。
结果:通过体模和体内成像实验验证了所提出方法的有效性。结果表明,在不进行任何硬件修改的情况下,灵敏度(提高了 3.6 倍)和空间分辨率(优于 1 毫米)都有显著提高。
结论:这些发现表明 SSME 能够提高 MPI 的空间分辨率和灵敏度。
意义:该方法为平衡 MPI 中的空间分辨率和灵敏度这一持续挑战提供了一种解决方案,有可能促进 MPI 在更广泛的医学应用中的实施。
IEEE Trans Biomed Eng. 2024-10
Med Phys. 2019-2-22
IEEE Trans Med Imaging. 2014-10-24
Front Med Technol. 2024-10-23
IEEE Trans Biomed Eng. 2024-12