Sayyad Mohammed, Kopaczek Jan, Gilardoni Carmem M, Chen Weiru, Xiong Yihuang, Yang Shize, Watanabe Kenji, Taniguchi Takashi, Kudrawiec Robert, Hautier Geoffroy, Atatüre Mete, Tongay Seth Ariel
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, AZ 85287, USA.
Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wroclaw, 50-370, Poland.
Adv Mater. 2024 Jul;36(30):e2403583. doi: 10.1002/adma.202403583. Epub 2024 May 22.
2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two-faced structure, broken-mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high-quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain-boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high-resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (V and V) and double chalcogen vacancy (V -V), interstitial defects (M), and metal impurities (M) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h-BN-encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.
二维Janus过渡金属硫族化合物(TMDs)因其独特的双面结构、破镜对称以及由此产生的单层内巨大极化场而具有令人兴奋的量子特性,从而引起了广泛关注。尽管人们努力制备高质量的Janus单层膜,但现有方法依赖于高能过程,这些过程会引入不需要的晶界和点缺陷,而这些缺陷对材料的结构和激子特性的影响仍未得到充分研究。通过高分辨率扫描透射电子显微镜(HRSTEM)、密度泛函理论(DFT)和光谱测量;这项工作介绍了最常见且能量上最稳定的点缺陷。它确定了这些缺陷对材料光学性质的影响。HRSTEM研究表明,能量上最稳定的点缺陷是单硫族空位(V和V)、双硫族空位(V -V)、间隙缺陷(M)和金属杂质(M),并确定了它们的结构特征。DFT进一步确定了它们的形成能以及禁带内相关的局域能带。对h-BN封装的Janus单层膜进行的低温激子研究揭示了这些结构缺陷与观测到的发射特征之间的明确关联,这与理论结果密切相符。总体结果引入了Janus TMDs的缺陷基因组,作为评估其结构质量和器件性能的重要指导方针。