Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
Nucleosides Nucleotides Nucleic Acids. 2024;43(8):783-797. doi: 10.1080/15257770.2024.2351135. Epub 2024 May 14.
Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. arbamoyl-phosphate synthetase, spartate transcarbamoylase, and ihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.
谷氨酰胺酰胺转移酶(GATs)催化核苷酸、氨基酸、糖蛋白和酶辅因子的合成,因此是细胞增殖的关键代谢酶。氨甲酰磷酸合成酶、天冬氨酸转氨甲酰酶和乳清酸苷-5′-磷酸脱羧酶(CAD)是 GAT 家族的多功能酶,催化嘧啶合成的前三个步骤。在我们发现细胞 GATs 参与疱疹病毒感染期间的免疫逃逸之后,我们发现 CAD 重新编程细胞代谢以提供有氧糖酵解和核苷酸合成所需的物质,从而使 RelA 脱酰胺化。脱酰胺化的 RelA 激活关键糖酵解酶的表达,而不是炎症 NF-κB 反应基因的表达。因此,癌细胞使 RelA 脱酰胺化,从而上调 CAD 活性或积累 RelA 突变。有趣的是,最近出现的 SARS-CoV-2 也激活了 CAD,将炎症反应的逃避与激活的核苷酸合成联系起来。CAD 的小分子抑制剂会耗尽核苷酸供应并增强抗病毒炎症反应,从而大大降低 SARS-CoV-2 的复制。此外,我们还发现 CTP 合酶 1(CTPS1)使干扰素(IFN)调节因子 3(IRF3)脱酰胺化,从而使 IFN 诱导沉默。我们之前的研究表明,磷酸核糖基甲酰甘氨酰胺合成酶(PFAS)和磷酸核糖基焦磷酸酰胺转移酶(PPAT)在疱疹病毒感染中使视黄酸诱导基因 I(RIG-I)脱酰胺化并逃避 dsRNA 诱导的固有免疫防御。总的来说,这些研究揭示了细胞 GATs 在代谢和免疫防御中的一种非常规酶促活性,为这些基本生物学过程之间的紧密联系提供了分子线索。