Department of Pathology, Copenhagen University Hospital, Herlev, Denmark.
Sci Rep. 2024 May 14;14(1):11048. doi: 10.1038/s41598-024-61857-y.
Information about cell composition in tissue samples is crucial for biomarker discovery and prognosis. Specifically, cancer tissue samples present challenges in deconvolution studies due to mutations and genetic rearrangements. Here, we optimized a robust, DNA methylation-based protocol, to be used for deconvolution of ovarian cancer samples. We compared several state-of-the-art methods (HEpiDISH, MethylCIBERSORT and ARIC) and validated the proposed protocol in an in-silico mixture and in an external dataset containing samples from ovarian cancer patients and controls. The deconvolution protocol we eventually implemented is based on MethylCIBERSORT. Comparing deconvolution methods, we paid close attention to the role of a reference panel. We postulate that a possibly high number of samples (in our case: 247) should be used when building a reference panel to ensure robustness and to compensate for biological and technical variation between samples. Subsequently, we tested the performance of the validated protocol in our own study cohort, consisting of 72 patients with malignant and benign ovarian disease as well as in five external cohorts. In conclusion, we refined and validated a reference-based algorithm to determine cell type composition of ovarian cancer tissue samples to be used in cancer biology studies in larger cohorts.
组织样本中细胞组成的信息对于生物标志物的发现和预后至关重要。具体来说,由于突变和基因重排,癌症组织样本在去卷积研究中存在挑战。在这里,我们优化了一种稳健的、基于 DNA 甲基化的方案,用于去卷积卵巢癌样本。我们比较了几种最先进的方法(HEpiDISH、MethylCIBERSORT 和 ARIC),并在模拟混合物和包含卵巢癌患者和对照样本的外部数据集上验证了所提出的方案。我们最终实施的去卷积方案基于 MethylCIBERSORT。在比较去卷积方法时,我们密切关注参考面板的作用。我们假设在构建参考面板时应该使用可能大量的样本(在我们的案例中:247),以确保稳健性,并补偿样本之间的生物学和技术变化。随后,我们在我们自己的研究队列(由 72 名患有恶性和良性卵巢疾病的患者以及五个外部队列组成)中测试了经过验证的方案的性能。总之,我们改进并验证了一种基于参考的算法,以确定卵巢癌组织样本的细胞类型组成,用于更大队列的癌症生物学研究。