Huang Yaxing, Wang Peng, Fan Tengjiao, Zhang Na, Zhao Lijiao, Zhong Rugang, Sun Guohui
Beijing Key Laboratory of Environment & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
ACS Pharmacol Transl Sci. 2024 Apr 17;7(5):1518-1532. doi: 10.1021/acsptsci.4c00085. eCollection 2024 May 10.
Tumor resistance seriously hinders the clinical application of chloroethylnitrosoureas (CENUs), such as -methylguanine-DNA methylguanine (MGMT), which can repair -alkyl lesions, thereby inhibiting the formation of cytotoxic DNA interstrand cross-links (ICLs). Metabolic differences between tumor and normal cells provide a biochemical basis for novel therapeutic strategies aimed at selectively inhibiting tumor energy metabolism. In this study, the energy blocker lonidamine (LND) was selected as a chemo-sensitizer of nimustine (ACNU) to explore its potential effects and underlying mechanisms in human glioblastoma and . A series of cell-level studies showed that LND significantly increased the cytotoxic effects of ACNU on glioblastoma cells. Furthermore, LND plus ACNU enhanced the energy deficiency by inhibiting glycolysis and mitochondrial function. Notably, LND almost completely downregulated MGMT expression by inducing intracellular acidification. The number of lethal DNA ICLs produced by ACNU increased after the LND pretreatment. The combination of LND and ACNU aggravated cellular oxidative stress. In resistant SF763 mouse tumor xenografts, LND plus ACNU significantly inhibited tumor growth with fewer side effects than ACNU alone. Finally, we proposed a new "HMAGOMR" chemo-sensitizing mechanism through which LND may act as a potential chemo-sensitizer to reverse ACNU resistance in glioblastoma: moderate inhibition of hexokinase (HK) activity (H); mitochondrial dysfunction (M); suppressing adenosine triphosphate (ATP)-dependent drug efflux (A); changing redox homeostasis to inhibit GSH-mediated drug inactivation (G) and increasing intracellular oxidative stress (O); downregulating MGMT expression through intracellular acidification (M); and partial inhibition of energy-dependent DNA repair (R).
肿瘤耐药性严重阻碍了氯乙基亚硝脲(CENUs)的临床应用,如O6-甲基鸟嘌呤-DNA甲基鸟嘌呤(MGMT),它可以修复O6-烷基损伤,从而抑制细胞毒性DNA链间交联(ICLs)的形成。肿瘤细胞与正常细胞之间的代谢差异为旨在选择性抑制肿瘤能量代谢的新型治疗策略提供了生化基础。在本研究中,选择能量阻断剂氯尼达明(LND)作为尼莫司汀(ACNU)的化学增敏剂,以探讨其在人胶质母细胞瘤中的潜在作用及潜在机制。一系列细胞水平研究表明,LND显著增强了ACNU对胶质母细胞瘤细胞的细胞毒性作用。此外,LND加ACNU通过抑制糖酵解和线粒体功能增强了能量缺乏。值得注意的是,LND通过诱导细胞内酸化几乎完全下调了MGMT表达。LND预处理后,ACNU产生的致死性DNA ICLs数量增加。LND与ACNU联合加重了细胞氧化应激。在耐药的SF763小鼠肿瘤异种移植模型中,LND加ACNU显著抑制肿瘤生长,且副作用比单独使用ACNU更少。最后,我们提出了一种新的“HMAGOMR”化学增敏机制,通过该机制LND可能作为一种潜在的化学增敏剂来逆转胶质母细胞瘤中的ACNU耐药性:适度抑制己糖激酶(HK)活性(H);线粒体功能障碍(M);抑制三磷酸腺苷(ATP)依赖性药物外排(A);改变氧化还原稳态以抑制谷胱甘肽(GSH)介导的药物失活(G)并增加细胞内氧化应激(O);通过细胞内酸化下调MGMT表达(M);以及部分抑制能量依赖性DNA修复(R)。