Chen Jiankang, Han Dong, Deng Jiahua, Li Binbin, Wang Tingyi, Cao Liuguan, Zhang Lili, Lai Linfei
Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China.
Nanjing Economic and Technological Development Zone, Nanjing Nanovate Technologies Co., Ltd., Hengyuan Road, Nanjing, 210038, P. R. China.
Small Methods. 2024 Sep;8(9):e2301506. doi: 10.1002/smtd.202301506. Epub 2024 May 16.
A cost-effective and scalable approach for the fabrication of heterostructured microsupercapacitors (MSCs) employing screen-printing followed by sequential electrochemical and microspray deposition techniques has been demonstrated. The microsupercapacitor electrode (MSC) that composed of stacked layers of mesoporous carbon, polyaniline (PANI), and MXene hold significant promise for wearable electronics. By adjusting the deposition and spray cycles, the MSC can be readily coated with PANI and MXene. The sequentially stacked two layers of MXene and PANI on the mesoporous carbon spheres (PMPM-MSC) yielded a specific capacitance of 1003 mF cm at 0.5 mA cm, surpassing the performance of PANI/mesoporous carbon electrode by 1.6 times (771 mF cm). After 10,000 cycles of charge and discharge, PMPM-MSCs retained more than 86% of their initial capacitance. In-situ Raman spectroscopy confirmed the synergistic effects between MXene and PANI within the heterostructured stacked PMPM-MSC electrodes, including enhanced electronic conductivity and improved electrolyte ion dissociation, which aligned with the electrochemical measurement results, such as fast charge/discharge rates and reduced internal and mass transport resistance. This study demonstrates the potential of screen-printed heterostructured MSC stacks with maximum electrochemical synergy for portable and wearable energy storage devices.
一种具有成本效益且可扩展的制造异质结构微型超级电容器(MSC)的方法已得到证实,该方法采用丝网印刷,随后依次进行电化学和微喷雾沉积技术。由介孔碳、聚苯胺(PANI)和MXene的堆叠层组成的微型超级电容器电极(MSC)在可穿戴电子产品方面具有巨大潜力。通过调整沉积和喷雾循环,可以轻松地在MSC上涂覆PANI和MXene。在介孔碳球上依次堆叠两层MXene和PANI(PMPM-MSC),在0.5 mA cm时的比电容为1003 mF cm,比PANI/介孔碳电极的性能高出1.6倍(771 mF cm)。经过10000次充放电循环后,PMPM-MSCs保留了其初始电容的86%以上。原位拉曼光谱证实了异质结构堆叠的PMPM-MSC电极中MXene和PANI之间的协同效应,包括增强的电子导电性和改善的电解质离子解离,这与电化学测量结果一致,如快速的充放电速率以及降低的内部和质量传输电阻。这项研究证明了具有最大电化学协同效应的丝网印刷异质结构MSC堆栈在便携式和可穿戴储能设备方面的潜力。