Cox Associates and University of Colorado, Denver, CO, USA.
Independent Consultants in Epidemiology, Hume, MO, USA.
Crit Rev Toxicol. 2024 Apr;54(4):252-289. doi: 10.1080/10408444.2024.2337435. Epub 2024 May 16.
Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest.
We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence.
Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero.
We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
监管风险分析中的因果流行病学旨在评估消除或减少暴露会如何改变疾病发生率。我们将 (PoC)定义为在特定暴露发生变化时,根据完全指定的因果模型预测的疾病(或其他伤害)在一生中或其他指定时间间隔内发生的概率变化。我们将密切相关的概念 (CAS)定义为通过指定的暴露减少来消除或预防的疾病风险的预测分数,同时固定其他变量。用于评估流行病学关联的可预防风险影响的传统方法,包括人群归因分数(PAF)和布拉德福德·希尔(Bradford Hill)考虑因素,无法显示消除风险因素是否会降低疾病发病率。我们认为,结合因果人工智能(CAI)和对潜在疾病机制的现实部分和不完美了解的现代形式化因果模型,对于确定和量化暴露和实际感兴趣的疾病的 PoC 和 CAS 具有很大的希望。
我们简要回顾了关键的 CAI 概念和术语,然后应用它们来定义 PoC 和 CAS。我们提出了使用完全指定的因果贝叶斯网络(BN)模型来量化 PoC 的步骤。对于致癌的两阶段克隆扩张(TSCE)模型,导出了定量 PoC 和 CAS 计算的有用边界,并应用于基于现有流行病学和部分机制证据的苯和甲醛。
纳入了机制、毒理学和流行病学发现的苯和急性髓系白血病(AML)的因果 BN 模型表明,长时间高强度暴露于苯会增加 AML 的风险(PoC 高达 7e-5,CAS 高达 54%)。相比之下,没有确定从甲醛暴露到 AML 风险增加的因果途径,这与大量先前的机制、毒理学和流行病学证据一致;因此,甲醛引起的 AML 的 PoC 和 CAS 可能为零。
我们得出的结论是,PoC 方法可以区分可能的和不太可能的因果因素,并为一些实际重要的暴露和疾病提供有用的 PoC 和 CAS 上限。对于因果因素,PoC 可以帮助估计减少暴露对健康风险的定量影响,即使在机制证据现实上不完整且个体水平暴露-反应参数不确定的情况下也是如此。这说明了通过使用因果模型生成可测试的假设,然后获取毒理学数据来测试模型隐含的假设,并在必要时改进模型,可以为因果推断带来的优势。这种良性循环提供了仅通过证据权重考虑可能无法获得的因果决策的额外见解。