Chakraborty Tanmoy, Pradhan Punyabrata
Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
Phys Rev E. 2024 Apr;109(4-1):044135. doi: 10.1103/PhysRevE.109.044135.
We investigate steady-state current fluctuations in two models of hardcore run-and-tumble particles (RTPs) on a periodic one-dimensional lattice of L sites, for arbitrary tumbling rate γ=τ_{p}^{-1} and density ρ; model I consists of standard hardcore RTPs, while model II is an analytically tractable variant of model I, called a long-ranged lattice gas (LLG). We show that, in the limit of L large, the fluctuation of cumulative current Q_{i}(T,L) across the ith bond in a time interval T≫1/D grows first subdiffusively and then diffusively (linearly) with T: 〈Q_{i}^{2}〉∼T^{α} with α=1/2 for 1/D≪T≪L^{2}/D and α=1 for T≫L^{2}/D, where D(ρ,γ) is the collective- or bulk-diffusion coefficient; at small times T≪1/D, exponent α depends on the details. Remarkably, regardless of the model details, the scaled bond-current fluctuations D〈Q_{i}^{2}(T,L)〉/2χL≡W(y) as a function of scaled variable y=DT/L^{2} collapse onto a universal scaling curve W(y), where χ(ρ,γ) is the collective particle mobility. In the limit of small density and tumbling rate, ρ,γ→0, with ψ=ρ/γ fixed, there exists a scaling law: The scaled mobility γ^{a}χ(ρ,γ)/χ^{(0)}≡H(ψ) as a function of ψ collapses onto a scaling curve H(ψ), where a=1 and 2 in models I and II, respectively, and χ^{(0)} is the mobility in the limiting case of a symmetric simple exclusion process; notably, the scaling function H(ψ) is model dependent. For model II (LLG), we calculate exactly, within a truncation scheme, both the scaling functions, W(y) and H(ψ). We also calculate spatial correlation functions for the current and compare our theory with simulation results of model I; for both models, the correlation functions decay exponentially, with correlation length ξ∼τ_{p}^{1/2} diverging with persistence time τ_{p}≫1. Overall, our theory is in excellent agreement with simulations and complements the prior findings [T. Chakraborty and P. Pradhan, Phys. Rev. E 109, 024124 (2024)1539-375510.1103/PhysRevE.109.024124].
我们研究了在具有(L)个格点的周期性一维晶格上的两种硬核奔跑翻滚粒子(RTP)模型中的稳态电流涨落,其中翻滚速率(\gamma = \tau_{p}^{-1})和密度(\rho)任意;模型I由标准硬核RTP组成,而模型II是模型I的一个解析上易于处理的变体,称为长程晶格气体(LLG)。我们表明,在(L)很大的极限情况下,在时间间隔(T\gg1/D)内穿过第(i)个键的累积电流(Q_{i}(T,L))的涨落首先以亚扩散方式增长,然后随(T)呈扩散(线性)增长:对于(1/D\ll T\ll L^{2}/D),(\langle Q_{i}^{2}\rangle\sim T^{\alpha})且(\alpha = 1/2),对于(T\gg L^{2}/D),(\alpha = 1),其中(D(\rho,\gamma))是集体或体扩散系数;在小时间(T\ll1/D)时,指数(\alpha)取决于具体细节。值得注意的是,无论模型细节如何,作为缩放变量(y = DT/L^{2})的函数的缩放键电流涨落(D\langle Q_{i}^{2}(T,L)\rangle/2\chi L\equiv W(y))都坍缩到一条通用缩放曲线上(W(y))上,其中(\chi(\rho,\gamma))是集体粒子迁移率。在低密度和翻滚速率的极限情况下,(\rho,\gamma\rightarrow0),且(\psi = \rho/\gamma)固定,存在一个缩放定律:作为(\psi)的函数的缩放迁移率(\gamma^{a}\chi(\rho,\gamma)/\chi^{(0)}\equiv H(\psi))坍缩到一条缩放曲线上(H(\psi))上,其中在模型I和II中(a)分别为(1)和(2),(\chi^{(0)})是对称简单排斥过程极限情况下的迁移率;值得注意的是,缩放函数(H(\psi))依赖于模型。对于模型II(LLG),我们在一个截断方案内精确计算了两个缩放函数(W(y))和(H(\psi))。我们还计算了电流的空间关联函数,并将我们的理论与模型I的模拟结果进行比较;对于这两个模型,关联函数都呈指数衰减,关联长度(\xi\sim\tau_{p}^{1/2})随着持续时间(\tau_{p}\gg1)而发散。总体而言,我们的理论与模拟结果非常吻合,并补充了先前的发现 [T. Chakraborty和P. Pradhan,《物理评论E》109,024124 (2024)1539 - 375510.1103/PhysRevE.109.024124]。