Rafiei Soroush, Gerber Julien Maxime, Bigler Stéphane, Stergiopulos Nikolaos
Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Front Bioeng Biotechnol. 2024 May 2;12:1383459. doi: 10.3389/fbioe.2024.1383459. eCollection 2024.
Glaucoma, the leading cause of irreversible blindness globally, affects more than 70 million people across the world. When initial treatments prove ineffective, especially for cases with high intraocular pressure (IOP), the preferred approach involves employing glaucoma drainage devices (GDDs). This study introduces a novel self-adjustable glaucoma drainage device (SAGDD) designed to maintain IOP within the desired biological range (10 mmHg < IOP <18 mmHg) by dynamically modulating its fluidic resistance. Inspired by the starling resistor, we designed a circular valve with a thin, flexible membrane placed over the valve's inlet and outlet. To achieve the ideal design for the SAGDD and optimize its parameters, we utilized fluid-solid interaction (FSI) numerical models and conducted parametric studies, wherein simulations demonstrated the validity of the concept. Subsequently, to confirm and validate the numerical results, we fabricated a SAGDD at a 3:1 scale and subjected it to testing. Our findings demonstrate that, on a 3:1 scale, a circular SAGDD with a diameter of 8.1 mm and a stainless-steel membrane with a thickness of 10 µm effectively maintained IOP within the target range when the membrane exposed to external pressures of 7.5 or 10 mmHg. In summary, our study establishes a strong foundation for further exploration of the potential efficacy of SAGDD as a promising treatment for glaucoma. The cost-effectiveness and simplicity of its design, devoid of costly instrumentation, hold considerable promise in addressing the challenges associated with glaucoma.
青光眼是全球不可逆性失明的主要原因,全球有超过7000万人受其影响。当初始治疗无效时,尤其是对于高眼压(IOP)病例,首选方法是使用青光眼引流装置(GDD)。本研究介绍了一种新型的自调节青光眼引流装置(SAGDD),该装置旨在通过动态调节其流体阻力,将眼压维持在理想的生物学范围内(10 mmHg <眼压< 18 mmHg)。受斯塔林电阻器的启发,我们设计了一种圆形阀门,在阀门的入口和出口处覆盖有一层薄的柔性膜。为了实现SAGDD的理想设计并优化其参数,我们利用流固耦合(FSI)数值模型并进行了参数研究,模拟结果证明了该概念的有效性。随后,为了确认和验证数值结果,我们按3:1的比例制作了一个SAGDD并进行了测试。我们的研究结果表明,在3:1的比例下,当膜暴露于7.5或10 mmHg的外部压力时,直径为8.1 mm且不锈钢膜厚度为10 µm的圆形SAGDD能有效地将眼压维持在目标范围内。总之,我们的研究为进一步探索SAGDD作为一种有前景的青光眼治疗方法的潜在疗效奠定了坚实基础。其设计的成本效益和简单性,无需昂贵的仪器设备,在应对与青光眼相关的挑战方面具有很大的前景。