Tao Zongzhi, He Xiaoyue, Yu Lai, Ma Xinyi, Ahmad Nazir, Zhang Genqiang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Small Methods. 2024 Dec;8(12):e2400463. doi: 10.1002/smtd.202400463. Epub 2024 May 17.
Metal zinc (Zn) is being explored as a possible anode for aqueous zinc ion batteries (AZIBs). However, unrestrained Zn dendrite caused by "tip effect" and chemical corrosion continue to plague the Zn deposition process, limiting the functionality of AZIBs and prohibiting their use at high current densities. This work presents an in situ approach for introducing homogeneous ZnO nanoarrays onto the surface of Zn foil (Zn@ZnO NAs) as a functional protective interphase. On the one hand, well-distributed ZnO NAs protection layer can regulate the "tip effect" and confine the growth of Zn dendrite. On the other hand, the ZnO NAs layer can enhance the desolvation and diffusion process of Zn on the surface of anode, attributing to low voltage hysteresis and exceptional electrochemical performance at high current densities. As a result, the Zn@ZnO NAs exhibits a low voltage hysteresis of 50.8 mV with a superb lifespan of 1200 h at a current density of 5 mA cm. Moreover, Zn@ZnO NAs||α-MnO full-cell shows a superior cycling performance after 500 cycles at 0.5 A g with a capacity of 216.69 mAh g. This work is expected to provide ideas for designing other reversible zinc anode chemical systems, especially under a high current density.
金属锌(Zn)正被探索作为水系锌离子电池(AZIBs)的一种可能的负极材料。然而,由“尖端效应”和化学腐蚀导致的不受控制的锌枝晶继续困扰着锌沉积过程,限制了水系锌离子电池的功能,并阻碍其在高电流密度下的使用。这项工作提出了一种原位方法,将均匀的ZnO纳米阵列引入锌箔表面(Zn@ZnO NAs)作为功能性保护界面层。一方面,分布均匀的ZnO NAs保护层可以调节“尖端效应”并限制锌枝晶的生长。另一方面,ZnO NAs层可以增强阳极表面锌的去溶剂化和扩散过程,这归因于低电压滞后和在高电流密度下的优异电化学性能。结果,Zn@ZnO NAs在5 mA cm的电流密度下表现出50.8 mV的低电压滞后和1200 h的超长寿命。此外,Zn@ZnO NAs||α-MnO全电池在电流密度为0.5 A g时经过500次循环后表现出优异的循环性能,容量为216.69 mAh g。这项工作有望为设计其他可逆锌负极化学体系提供思路,特别是在高电流密度下。