Suppr超能文献

Xist RNA 中的 G-四链体折叠拮抗 PRC2 活性,实现 X 染色体失活的逐步调控。

G-quadruplex folding in Xist RNA antagonizes PRC2 activity for stepwise regulation of X chromosome inactivation.

机构信息

Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.

Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.

出版信息

Mol Cell. 2024 May 16;84(10):1870-1885.e9. doi: 10.1016/j.molcel.2024.04.015.

Abstract

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.

摘要

多梳抑制复合物 2(PRC2)如何受到 RNA 的调控仍然是一个未解决的问题。尽管 PRC2 可以与具有形成 RNA G-四链体(rG4)潜力的 G 链段结合,但 rG4 是否在体内广泛折叠以及 PRC2 是否结合折叠或未折叠的 rG4 尚不清楚。在这里,我们使用小鼠胚胎干细胞中的 X 染色体失活模型,鉴定出 Xist RNA 中的多个折叠 rG4,并证明 PRC2 优先结合折叠 rG4。高亲和力 rG4 结合抑制 PRC2 的组蛋白甲基转移酶活性,并且在体内稳定 rG4 会拮抗非活性 X 染色体上赖氨酸 27 处的 H3(H3K27me3)富集。令人惊讶的是,突变 rG4 不会影响 PRC2 的募集,但会促进其在染色质上的释放和催化激活。然而,H3K27me3 标记被错误定位,并且基因沉默受到损害。Xist-PRC2 复合物被束缚在 S1 染色体隔室中,阻止了必需的向 S2 隔室的易位。因此,Xist rG4 折叠控制 PRC2 活性、H3K27me3 富集以及染色体范围基因沉默的逐步调节。

相似文献

1
G-quadruplex folding in Xist RNA antagonizes PRC2 activity for stepwise regulation of X chromosome inactivation.
Mol Cell. 2024 May 16;84(10):1870-1885.e9. doi: 10.1016/j.molcel.2024.04.015.
2
Xist Deletional Analysis Reveals an Interdependency between Xist RNA and Polycomb Complexes for Spreading along the Inactive X.
Mol Cell. 2019 Apr 4;74(1):101-117.e10. doi: 10.1016/j.molcel.2019.01.015. Epub 2019 Feb 28.
3
PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice.
Genome Biol. 2017 May 3;18(1):82. doi: 10.1186/s13059-017-1211-5.
4
Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome.
Mol Cell. 2014 Jan 23;53(2):301-16. doi: 10.1016/j.molcel.2014.01.002.
5
High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation.
Nature. 2013 Dec 19;504(7480):465-469. doi: 10.1038/nature12719. Epub 2013 Oct 27.
6
The Xist RNA-PRC2 complex at 20-nm resolution reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4216-25. doi: 10.1073/pnas.1503690112. Epub 2015 Jul 20.
7
hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing.
Mol Cell. 2017 Dec 7;68(5):955-969.e10. doi: 10.1016/j.molcel.2017.11.013.
8
Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing.
EMBO J. 2006 Jul 12;25(13):3110-22. doi: 10.1038/sj.emboj.7601187. Epub 2006 Jun 8.
9
The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3.
Nature. 2015 May 14;521(7551):232-6. doi: 10.1038/nature14443. Epub 2015 Apr 27.
10
Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism.
Dev Cell. 2025 May 5;60(9):1321-1335.e5. doi: 10.1016/j.devcel.2024.12.028. Epub 2025 Jan 10.

引用本文的文献

1
Impact of G-tract RNAs and the DHX36 helicase on stress granule composition and formation.
bioRxiv. 2025 Jun 17:2025.06.16.659950. doi: 10.1101/2025.06.16.659950.
2
RNA G-quadruplex structure targeting and imaging: recent advances and future directions.
RNA. 2025 Jul 16;31(8):1053-1080. doi: 10.1261/rna.080587.125.
3
An evolving landscape of PRC2-RNA interactions in chromatin regulation.
Nat Rev Mol Cell Biol. 2025 Apr 30. doi: 10.1038/s41580-025-00850-3.
4
CTCF-RNA interactions orchestrate cell-specific chromatin loop organization.
bioRxiv. 2025 Mar 19:2025.03.19.643339. doi: 10.1101/2025.03.19.643339.
5
Isogenic comparison of Airn and Xist reveals core principles of Polycomb recruitment by lncRNAs.
Mol Cell. 2025 Mar 20;85(6):1117-1133.e14. doi: 10.1016/j.molcel.2025.02.014.
8
Protocol for mapping RNA G-quadruplex for chromatin-bound RNA using d-rG4-seq.
STAR Protoc. 2024 Dec 20;5(4):103471. doi: 10.1016/j.xpro.2024.103471. Epub 2024 Dec 5.
9
Recruitment of chromatin remodelers by XIST B-repeat region is variably dependent on HNRNPK.
Hum Mol Genet. 2025 Feb 1;34(3):229-238. doi: 10.1093/hmg/ddae173.
10
Re-analysis of CLAP data affirms PRC2 as an RNA binding protein.
bioRxiv. 2025 Feb 28:2024.09.19.613009. doi: 10.1101/2024.09.19.613009.

本文引用的文献

2
Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo.
Mol Cell. 2024 Apr 4;84(7):1271-1289.e12. doi: 10.1016/j.molcel.2024.01.026. Epub 2024 Feb 21.
3
Structural basis for inactivation of PRC2 by G-quadruplex RNA.
Science. 2023 Sep 22;381(6664):1331-1337. doi: 10.1126/science.adh0059. Epub 2023 Sep 21.
4
A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB.
Biol Open. 2023 Jun 15;12(6). doi: 10.1242/bio.059955. Epub 2023 Jun 7.
5
RNA G-quadruplex structure contributes to cold adaptation in plants.
Nat Commun. 2022 Oct 20;13(1):6224. doi: 10.1038/s41467-022-34040-y.
6
A Key Molecular Regulator, RNA G-Quadruplex and Its Function in Plants.
Front Plant Sci. 2022 Jun 15;13:926953. doi: 10.3389/fpls.2022.926953. eCollection 2022.
7
Multimeric G-quadruplexes: A review on their biological roles and targeting.
Int J Biol Macromol. 2022 Apr 15;204:89-102. doi: 10.1016/j.ijbiomac.2022.01.197. Epub 2022 Feb 4.
8
FDRestimation: Flexible False Discovery Rate Computation in R.
F1000Res. 2021 Jun 3;10:441. doi: 10.12688/f1000research.52999.2. eCollection 2021.
10
Xist Repeat A contributes to early recruitment of Polycomb complexes during X-chromosome inactivation.
Dev Cell. 2021 May 3;56(9):1236-1237. doi: 10.1016/j.devcel.2021.04.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验