Dhawan Diksha, Zgid Dominika, Motta Mario
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.
J Chem Theory Comput. 2024 Jun 11;20(11):4629-4638. doi: 10.1021/acs.jctc.4c00241. Epub 2024 May 18.
Green's function methods lead to ab initio, systematically improvable simulations of molecules and materials while providing access to multiple experimentally observable properties such as the density of states and the spectral function. The calculation of the exact one-particle Green's function remains a significant challenge for classical computers and was attempted only on very small systems. Here, we present a hybrid quantum-classical algorithm to calculate the imaginary-time one-particle Green's function. The proposed algorithm combines the variational quantum eigensolver and the quantum subspace expansion methods to calculate Green's function in Lehmann's representation. We demonstrate the validity of this algorithm by simulating H and H on quantum simulators and on IBM's quantum devices.
格林函数方法能够实现对分子和材料的从头算、系统可改进的模拟,同时还能获取诸如态密度和谱函数等多种可通过实验观测的性质。对于经典计算机而言,精确计算单粒子格林函数仍然是一项重大挑战,并且仅在非常小的系统上进行过尝试。在此,我们提出一种混合量子 - 经典算法来计算虚时单粒子格林函数。所提出的算法结合了变分量子本征求解器和量子子空间展开方法,以在莱曼表象中计算格林函数。我们通过在量子模拟器和IBM量子设备上模拟氢分子(H₂)来证明该算法的有效性。 (注:原文中“H and H”表述有误,推测应为“H₂”,译文按此修正翻译)