Suppr超能文献

探索单溴化对二苯并呋喃和二苯并噻吩异构体中空穴-电子传输及分布的影响:一项第一性原理研究。

Exploring the effects of mono-bromination on hole-electron transport and distribution in dibenzofuran and dibenzothiophene isomers: a first-principles study.

作者信息

Deepakvijay K, Prakasam A

机构信息

Computational & Theoretical Physics Laboratory, PG & Research Department of Physics, Thiruvalluvar Govt. Arts College, Rasipuram, 637408, Tamil Nadu, India.

出版信息

J Mol Model. 2024 May 18;30(6):171. doi: 10.1007/s00894-024-05966-5.

Abstract

CONTEXT

This study delves into hole-electron transport and distribution properties inherent in mono-brominated dibenzofuran (DBF) and dibenzothiophene (DBT) isomers. As determined by frontier molecular orbitals, all brominated structures have narrower bandgaps than their primary structures. The TD-DFT calculation showed that 2BDBT had the highest absorption wavelength of all molecules at 315.35 nm. Notably, the study unveils remarkably low electron and hole reorganization energies due to bromine substitution in DBF and DBT molecules. Specifically, the 4BDBF has the lowest hole reorganization energy of all DBF configurations, 0.229 eV. In addition, 3BDBF has 0.226 eV less electron reorganization energy than all other molecules. Compared to DBT, 3BDBT has the lowest electron reorganization energy of 0.254 eV. Overall, this research sheds significant light on the fundamental electronic and hole transport characteristics of bromine-substituted DBF and DBT isomers, highlighting their promising role in polymer design as donors/acceptors for advanced organic electronic applications.

METHODS

Molecular structures were optimized using Density Functional Theory (DFT) B3LYP/6-311 +  + G (d, p) level of theory, and the study further elucidates these molecules' energy levels and absorption spectra through Time-Dependent Density Functional Theory TD-DFT; these calculations were performed using Gaussian 09W software package. The key parameters such as reorganization energies, Electron Localization Function map, Laplacian Bond Order, and NCI-RDG were meticulously examined for the molecules with the results of DFT calculations were analyzed and displayed by utilizing the software packages VMD 1.9.4 and Multiwfn 3.8, aiming to comprehend their charge transport and distribution properties.

摘要

背景

本研究深入探讨了单溴代二苯并呋喃(DBF)和二苯并噻吩(DBT)异构体中固有的空穴-电子传输和分布特性。通过前沿分子轨道确定,所有溴化结构的带隙都比其母体结构更窄。TD-DFT计算表明,2BDBT在所有分子中具有最高的吸收波长,为315.35nm。值得注意的是,该研究揭示了由于DBF和DBT分子中的溴取代,电子和空穴重组能极低。具体而言,4BDBF在所有DBF构型中具有最低的空穴重组能,为0.229eV。此外,3BDBF的电子重组能比所有其他分子少0.226eV。与DBT相比,3BDBT具有最低的电子重组能,为0.254eV。总体而言,本研究显著揭示了溴取代DBF和DBT异构体的基本电子和空穴传输特性,突出了它们在聚合物设计中作为先进有机电子应用的供体/受体的潜在作用。

方法

使用密度泛函理论(DFT)B3LYP/6-311++G(d,p)理论水平对分子结构进行优化,该研究通过含时密度泛函理论(TD-DFT)进一步阐明这些分子的能级和吸收光谱;这些计算使用高斯09W软件包进行。利用VMD 1.9.4和Multiwfn 3.8软件包对DFT计算结果中的分子仔细检查诸如重组能、电子定域函数图、拉普拉斯键级和NCI-RDG等关键参数,旨在理解它们的电荷传输和分布特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验