Ma Ming-Yang, Liu Yan, Yang Jia-Lin, Li Shu-Ying, Du Miao, Liu Dai-Huo, Hao Ze-Lin, Guo Jin-Zhi, Wu Xing-Long
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024 PR China.
Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 PR China.
J Colloid Interface Sci. 2024 Sep 15;670:174-181. doi: 10.1016/j.jcis.2024.05.065. Epub 2024 May 10.
Interlayer intercalation engineering shows great feasibility to improve the structure stability of the layered oxides. Although high Zn-storage capability has been attained based on the pillar effect of multifarious intercalants, an in-depth understanding the synergistic effect of intercalated multiple metal ions is still in deficiency. Herein, alkali metal ion K, alkaline earth metal ion Mg and trivalent metal ion Al are introduced into the VO interlayer of VO. Due to the different electronegativity and hydrated ion radius of K, Mg and Al, adjusting the relative proportions of these metal ions can achieve an appropriate interlayer spacing, stable layer structure and regular morphology, which facilitates the transport kinetics of Zn. Under the synergistic effect of pre-intercalated multi-metal ion, the optimal tri-metal ion intercalated hydrated VO cathode exhibits a high specific capacity of 382.4 mAh g at 0.5 A g, and long-term cycling stability with capacity retention of 86 % after 2000 cycles at the high current density of 10 A g. Ex-situ and kinetic characterizations reveal the fast charge transfer and reversible Zn intercalation mechanism. The multi-ion engineering strategy provides an effective way to design desirable layered cathode materials for aqueous zinc-ion batteries.
层间插层工程在提高层状氧化物的结构稳定性方面显示出巨大的可行性。尽管基于多种插层剂的柱撑效应已实现了高储锌能力,但对插层多金属离子的协同效应仍缺乏深入了解。在此,将碱金属离子K、碱土金属离子Mg和三价金属离子Al引入到VO的VO层间。由于K、Mg和Al的电负性和水合离子半径不同,调节这些金属离子的相对比例可实现合适的层间距、稳定的层结构和规则的形貌,这有利于锌的传输动力学。在预插层多金属离子的协同作用下,最优的三金属离子插层水合VO正极在0.5 A g下表现出382.4 mAh g的高比容量,在10 A g的高电流密度下经过2000次循环后具有86%的容量保持率和长期循环稳定性。非原位和动力学表征揭示了快速的电荷转移和可逆的锌插层机制。多离子工程策略为设计用于水系锌离子电池的理想层状正极材料提供了一种有效方法。