Suppr超能文献

基于低密度脑电图的功能连接可区分最小意识状态阳性与阴性。

Low-density EEG-based Functional Connectivity Discriminates Minimally Conscious State plus from minus.

机构信息

IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci 269, Firenze, FI, Italy.

IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci 269, Firenze, FI, Italy; Scuola Superiore Sant'Anna, BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, PI, Italy.

出版信息

Clin Neurophysiol. 2024 Jul;163:197-208. doi: 10.1016/j.clinph.2024.04.021. Epub 2024 May 7.

Abstract

OBJECTIVE

Within the continuum of consciousness, patients in a Minimally Conscious State (MCS) may exhibit high-level behavioral responses (MCS+) or may not (MCS-). The evaluation of residual consciousness and related classification is crucial to propose tailored rehabilitation and pharmacological treatments, considering the inherent differences among groups in diagnosis and prognosis. Currently, differential diagnosis relies on behavioral assessments posing a relevant risk of misdiagnosis. In this context, EEG offers a non-invasive approach to model the brain as a complex network. The search for discriminating features could reveal whether behavioral responses in post-comatose patients have a defined physiological background. Additionally, it is essential to determine whether the standard behavioral assessment for quantifying responsiveness holds physiological significance.

METHODS

In this prospective observational study, we investigated whether low-density EEG-based graph metrics could discriminate MCS+/- patients by enrolling 57 MCS patients (MCS-: 30; males: 28). At admission to intensive rehabilitation, 30 min resting-state closed-eyes EEG recordings were performed together with consciousness diagnosis following international guidelines. After EEG preprocessing, graphs' metrics were estimated using different connectivity measures, at multiple connection densities and frequency bands (α,θ,δ). Metrics were also provided to cross-validated Machine Learning (ML) models with outcome MCS+/-.

RESULTS

A lower level of brain activity integration was found in the MCS- group in the α band. Instead, in the δ band MCS- group presented an higher level of clustering (weighted clustering coefficient) respect to MCS+. The best-performing solution in discriminating MCS+/- through the use of ML was an Elastic-Net regularized logistic regression with a cross-validation accuracy of 79% (sensitivity and specificity of 74% and 85% respectively).

CONCLUSION

Despite tackling the MCS+/- differential diagnosis is highly challenging, a daily-routine low-density EEG might allow to differentiate across these differently responsive brain networks.

SIGNIFICANCE

Graph-theoretical features are shown to discriminate between these two neurophysiologically similar conditions, and may thus support the clinical diagnosis.

摘要

目的

在意识连续体中,处于最小意识状态(MCS)的患者可能表现出高水平的行为反应(MCS+),也可能没有(MCS-)。评估残留意识和相关分类对于提出针对性的康复和药物治疗至关重要,因为在诊断和预后方面,各组之间存在内在差异。目前,基于行为评估的鉴别诊断存在误诊的相关风险。在这种情况下,脑电图提供了一种非侵入性的方法来模拟大脑作为一个复杂网络。寻找有区别的特征可以揭示昏迷后患者的行为反应是否具有明确的生理背景。此外,确定用于量化反应性的标准行为评估是否具有生理意义也很重要。

方法

在这项前瞻性观察研究中,我们通过招募 57 名 MCS 患者(MCS-:30;男性:28),研究了基于低密度脑电图的图度量是否可以区分 MCS+/-患者。在进入强化康复治疗时,进行了 30 分钟的闭眼静息状态脑电图记录,并按照国际指南进行意识诊断。在 EEG 预处理之后,使用不同的连接度量,在多个连接密度和频带(α、θ、δ)下估计图形度量。还为基于机器学习(ML)的模型提供了指标,以交叉验证结果为 MCS+/−。

结果

在α频带中,MCS-组的大脑活动整合水平较低。相反,在δ频带中,MCS-组的聚类程度较高(加权聚类系数)。通过使用 ML 来区分 MCS+/-的最佳解决方案是使用弹性网络正则化逻辑回归,其交叉验证准确率为 79%(敏感性和特异性分别为 74%和 85%)。

结论

尽管对 MCS+/-的鉴别诊断极具挑战性,但日常低密度脑电图可能可以区分这些具有不同反应性的脑网络。

意义

图论特征被证明可以区分这两种神经生理学上相似的情况,因此可以支持临床诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验