文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非小细胞肺癌中谷胱甘肽分解代谢通过半胱氨酸饥饿来维持线粒体呼吸功能。

Mitochondrial respiratory function is preserved under cysteine starvation via glutathione catabolism in NSCLC.

机构信息

Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.

出版信息

Nat Commun. 2024 May 18;15(1):4244. doi: 10.1038/s41467-024-48695-2.


DOI:10.1038/s41467-024-48695-2
PMID:38762605
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11102494/
Abstract

Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.

摘要

半胱氨酸代谢发生在细胞区室之间,以支持多种生物功能并防止铁死亡的诱导。虽然细胞溶质半胱氨酸代谢的破坏与这种细胞死亡形式有关,但尚不清楚驻留在线粒体中的大量半胱氨酸代谢是否同样与铁死亡有关。在这里,我们表明,尽管在细胞外胱氨酸丧失后细胞内半胱氨酸迅速耗尽,但肺癌细胞中线粒体中仍存在依赖半胱氨酸的 Fe-S 簇合成。这促进了呼吸功能的保留和线粒体氧化还原状态的维持。在这些限制条件下,我们发现 CHAC1 对谷胱甘肽的分解代谢支持线粒体半胱氨酸池,以维持对氧化代谢至关重要的 Fe-S 蛋白的功能。我们发现,在半胱氨酸限制下破坏 Fe-S 簇合成可以防止铁死亡的诱导,这表明在饥饿条件下,线粒体功能的保存与存活是拮抗的。总的来说,我们的研究结果表明线粒体半胱氨酸代谢参与了铁死亡的诱导,并揭示了线粒体对营养压力的响应的一种弹性机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/2a625902c6a3/41467_2024_48695_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/1e88ec7db51c/41467_2024_48695_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/ae3e126167c8/41467_2024_48695_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/0f02c95b54ee/41467_2024_48695_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/d1b6c13f85a8/41467_2024_48695_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/822da7ba29c2/41467_2024_48695_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/2a625902c6a3/41467_2024_48695_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/1e88ec7db51c/41467_2024_48695_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/ae3e126167c8/41467_2024_48695_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/0f02c95b54ee/41467_2024_48695_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/d1b6c13f85a8/41467_2024_48695_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/822da7ba29c2/41467_2024_48695_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0c/11102494/2a625902c6a3/41467_2024_48695_Fig6_HTML.jpg

相似文献

[1]
Mitochondrial respiratory function is preserved under cysteine starvation via glutathione catabolism in NSCLC.

Nat Commun. 2024-5-18

[2]
NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis.

Nature. 2017-11-30

[3]
Hydrogen sulfide-mediated persulfidation regulates homocysteine metabolism and enhances ferroptosis in non-small cell lung cancer.

Mol Cell. 2024-10-17

[4]
COX7A1 enhances the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via regulating mitochondrial metabolism.

Cell Death Dis. 2022-11-23

[5]
Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis.

Int J Biol Sci. 2024

[6]
Biological insights in non-small cell lung cancer.

Cancer Biol Med. 2023-6-28

[7]
Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System.

J Biol Chem. 2015-11-13

[8]
Cysteine Deprivation Targets Ovarian Clear Cell Carcinoma Oxidative Stress and Iron-Sulfur Cluster Biogenesis Deficit.

Antioxid Redox Signal. 2020-12-10

[9]
Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells.

Invest Ophthalmol Vis Sci. 2004-11

[10]
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries.

Biochim Biophys Acta Mol Cell Res. 2018-11-10

引用本文的文献

[1]
Impaired xCT-mediated cystine uptake drives serine and proline metabolic reprogramming and mitochondrial fission in skeletal muscle cells.

Redox Biol. 2025-8-21

[2]
From mitochondrial dysregulation to ferroptosis: Exploring new strategies and challenges in radioimmunotherapy (Review).

Int J Oncol. 2025-9

[3]
Thioredoxin Reductase 1 inhibition triggers ferroptosis in KRAS-independent lung cancers.

bioRxiv. 2025-7-30

[4]
Increased antioxidative defense and reduced advanced glycation end-product formation by metabolic adaptation in non-small-cell-lung-cancer patients.

Nat Commun. 2025-6-3

[5]
NDUFA8 promotes cell viability and inhibits ferroptosis and cisplatin sensitivity by stabilizing Fe-S clusters in cervical cancer.

Naunyn Schmiedebergs Arch Pharmacol. 2025-5-8

[6]
Metabolic reprogramming in sepsis-associated acute kidney injury: insights from lipopolysaccharide-induced oxidative stress and amino acid dysregulation.

Mol Biol Rep. 2024-12-16

[7]
CHAC1: a master regulator of oxidative stress and ferroptosis in human diseases and cancers.

Front Cell Dev Biol. 2024-10-29

[8]
Ferroptosis-inducing nanomedicine and targeted short peptide for synergistic treatment of hepatocellular carcinoma.

J Nanobiotechnology. 2024-9-3

[9]
Differential Expression of Circulating miRNAs and Carfilzomib-Related Cardiovascular Adverse Events in Patients with Multiple Myeloma.

Int J Mol Sci. 2024-7-16

本文引用的文献

[1]
Autoregulatory control of mitochondrial glutathione homeostasis.

Science. 2023-11-17

[2]
Protocol for mitochondrial isolation and sub-cellular localization assay for mitochondrial proteins.

STAR Protoc. 2023-3-17

[3]
Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals.

Nat Chem Biol. 2023-1

[4]
Context-dependent regulation of ferroptosis sensitivity.

Cell Chem Biol. 2022-9-15

[5]
ISCA2 deficiency leads to heme synthesis defects and impaired erythroid differentiation in K562 cells by indirect ROS-mediated IRP1 activation.

Biochim Biophys Acta Mol Cell Res. 2022-10

[6]
Targeting ferroptosis as a vulnerability in cancer.

Nat Rev Cancer. 2022-7

[7]
SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells.

Nature. 2021-11

[8]
Mitochondrial regulation of ferroptosis.

J Cell Biol. 2021-9-6

[9]
Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle.

Sci Adv. 2021-1-1

[10]
Ferroptosis: mechanisms, biology and role in disease.

Nat Rev Mol Cell Biol. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索