Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
Commun Biol. 2024 May 18;7(1):600. doi: 10.1038/s42003-024-06293-4.
Pending questions regarding cochlear amplification and tuning are hinged upon the organ of Corti (OoC) active mechanics: how outer hair cells modulate OoC vibrations. Our knowledge regarding OoC mechanics has advanced over the past decade thanks to the application of tomographic vibrometry. However, recent data from live cochlea experiments often led to diverging interpretations due to complicated interaction between passive and active responses, lack of image resolution in vibrometry, and ambiguous measurement angles. We present motion measurements and analyses of the OoC sub-components at the close-to-true cross-section, measured from acutely excised gerbil cochleae. Specifically, we focused on the vibrating patterns of the reticular lamina, the outer pillar cell, and the basilar membrane because they form a structural frame encasing active outer hair cells. For passive transmission, the OoC frame serves as a rigid truss. In contrast, motile outer hair cells exploit their frame structures to deflect the upper compartment of the OoC while minimally disturbing its bottom side (basilar membrane). Such asymmetric OoC vibrations due to outer hair cell motility explain how recent observations deviate from the classical cochlear amplification theory.
有关耳蜗放大和调谐的悬而未决的问题取决于耳蜗器官(OoC)的主动力学:外毛细胞如何调节 OoC 振动。由于断层振动测量技术的应用,过去十年中,我们对 OoC 力学的了解有了很大的提高。然而,由于被动和主动响应之间的复杂相互作用、振动测量中的图像分辨率缺乏以及测量角度不明确,活体耳蜗实验的最新数据经常导致解释不一致。我们展示了从急性离体沙鼠耳蜗测量的 OoC 亚成分的运动测量和分析,这些亚成分位于非常接近真实横截面的位置。具体来说,我们关注的是网状层、外柱细胞和基底膜的振动模式,因为它们形成了一个包围活跃外毛细胞的结构框架。对于被动传输,OoC 框架充当刚性桁架。相比之下,运动的外毛细胞利用它们的框架结构来偏转 OoC 的上腔,同时最小化对其底部(基底膜)的干扰。由于外毛细胞的运动导致的这种不对称的 OoC 振动解释了为什么最近的观察结果与经典的耳蜗放大理论不符。