Chen Jingxuan, Ye Lvhao, Wu Tai, Hua Yong, Zhang Xiaoliang
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Adv Mater. 2024 Sep;36(36):e2404495. doi: 10.1002/adma.202404495. Epub 2024 Jul 16.
CsPbI perovskite quantum dot (PQD) shows high potential for next-generation photovoltaics due to their tunable surface chemistry, good solution-processability and unique photophysical properties. However, the remained long-chain ligand attached to the PQD surface significantly impedes the charge carrier transport within the PQD solids, thereby predominantly influencing the charge extraction of PQD solar cells (PQDSCs). Herein, a ligand-induced energy level modulation is reported for band engineering of PQD solids to improve the charge extraction of PQDSCs. Detailed theoretical calculations and systemic experimental studies are performed to comprehensively understand the photophysical properties of the PQD solids dominated by the surface ligands of PQDs. The results reveal that 4-nitrobenzenethiol and 4-methoxybenzenethiol molecules with different dipole moments can firmly anchor to the PQD surface through the thiol group to modulate the energy levels of PQDs, and a gradient band structure within the PQD solid is subsequently realized. Consequently, the band-engineered PQDSC delivers an efficiency of up to 16.44%, which is one of the highest efficiencies of CsPbI PQDSCs. This work provides a feasible avenue for the band engineering of PQD solids by tuning the surface chemistry of PQDs for high-performing solar cells or other optoelectronic devices.
CsPbI钙钛矿量子点(PQD)因其可调节的表面化学性质、良好的溶液可加工性和独特的光物理性质,在下一代光伏领域展现出巨大潜力。然而,附着在PQD表面的长链配体严重阻碍了电荷载流子在PQD固体中的传输,从而对PQD太阳能电池(PQDSC)的电荷提取产生主要影响。在此,报道了一种通过配体诱导的能级调制对PQD固体进行能带工程,以改善PQDSC的电荷提取。进行了详细的理论计算和系统的实验研究,以全面了解由PQD表面配体主导的PQD固体的光物理性质。结果表明,具有不同偶极矩的4-硝基苯硫酚和4-甲氧基苯硫酚分子可以通过硫醇基团牢固地锚定在PQD表面,从而调节PQD的能级,随后在PQD固体内实现梯度能带结构。因此,经过能带工程的PQDSC效率高达16.44%,这是CsPbI PQDSC的最高效率之一。这项工作通过调整PQD的表面化学性质,为高性能太阳能电池或其他光电器件的PQD固体能带工程提供了一条可行的途径。