Suppr超能文献

人工智能在胃镜检查中的应用:从诊断推理到市场。

Artificial intelligence for gastric cancer in endoscopy: From diagnostic reasoning to market.

机构信息

Endoscopy Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brasil; AI Medical Service Inc., Tokyo, Japan.

Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA.

出版信息

Dig Liver Dis. 2024 Jul;56(7):1156-1163. doi: 10.1016/j.dld.2024.04.019. Epub 2024 May 18.

Abstract

Recognition of gastric conditions during endoscopy exams, including gastric cancer, usually requires specialized training and a long learning curve. Besides that, the interobserver variability is frequently high due to the different morphological characteristics of the lesions and grades of mucosal inflammation. In this sense, artificial intelligence tools based on deep learning models have been developed to support physicians to detect, classify, and predict gastric lesions more efficiently. Even though a growing number of studies exists in the literature, there are multiple challenges to bring a model to practice in this field, such as the need for more robust validation studies and regulatory hurdles. Therefore, the aim of this review is to provide a comprehensive assessment of the current use of artificial intelligence applied to endoscopic imaging to evaluate gastric precancerous and cancerous lesions and the barriers to widespread implementation of this technology in clinical routine.

摘要

在胃镜检查中识别胃部情况,包括胃癌,通常需要专门的培训和长期的学习曲线。此外,由于病变的不同形态特征和黏膜炎症的不同程度,观察者间的变异性通常很高。在这方面,基于深度学习模型的人工智能工具已经被开发出来,以帮助医生更有效地检测、分类和预测胃部病变。尽管文献中有越来越多的研究,但要将模型应用于该领域的实践仍然存在许多挑战,例如需要更强大的验证研究和监管障碍。因此,本综述的目的是全面评估人工智能在评估胃前癌和癌性病变的内镜成像中的应用,并评估该技术在临床常规中广泛应用的障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验