文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用基于三亲的全外显子组测序对中国队列中不明原因神经发育迟缓及神经发育合并症患儿进行表型和遗传学分析。

Phenotypic and genetic analysis of children with unexplained neurodevelopmental delay and neurodevelopmental comorbidities in a Chinese cohort using trio-based whole-exome sequencing.

机构信息

Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.

Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.

出版信息

Orphanet J Rare Dis. 2024 May 19;19(1):205. doi: 10.1186/s13023-024-03214-w.


DOI:10.1186/s13023-024-03214-w
PMID:38764027
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11103872/
Abstract

BACKGROUND: Trio-based whole-exome sequencing (trio-WES) enables identification of pathogenic variants, including copy-number variants (CNVs), in children with unexplained neurodevelopmental delay (NDD) and neurodevelopmental comorbidities (NDCs), including autism spectrum disorder (ASD), epilepsy, and attention deficit hyperactivity disorder. Further phenotypic and genetic analysis on trio-WES-tested NDD-NDCs cases may help to identify key phenotypic factors related to higher diagnostic yield of using trio-WES and novel risk genes associated with NDCs in clinical settings. METHODS: In this study, we retrospectively performed phenotypic analysis on 163 trio-WES-tested NDD-NDCs children to determine the phenotypic differences between genetically diagnosed and non-genetically diagnosed groups. Additionally, we conducted genetic analysis of ASD genes with the help of Simons Foundation for Autism Research Institute (SFARI) Gene database to identify novel possible ASD-risk genes underlying genetic NDD conditions. RESULTS: Among these 163 patients, pathogenic variants were identified in 82 cases (82/163, 50.3%), including 20 cases with CNVs. By comparing phenotypic variables between genetically diagnosed group (82 cases) and non-genetically diagnosed group (81 cases) with multivariate binary logistic regression analysis, we revealed that NDD-NDCs cases presenting with severe-profound NDD [53/82 vs 17/81, adjusted-OR (95%CI): 4.865 (2.213 - 10.694), adjusted-P < 0.001] or having multiple NDCs [26/82 vs 8/81, adjusted-OR (95%CI): 3.731 (1.399 - 9.950), adjusted-P = 0.009] or accompanying ASD [64/82 vs 35/81, adjusted-OR (95%CI): 3.256 (1.479 - 7.168), adjusted-P = 0.003] and head circumference abnormality [33/82 vs 11/81, adjusted-OR (95%CI): 2.788 (1.148 - 6.774), adjusted-P = 0.024] were more likely to have a genetic diagnosis using trio-WES. Moreover, 37 genes with monogenetic variants were identified in 48 patients genetically diagnosed with NDD-ASD, and 15 dosage-sensitive genes were identified in 16 individuals with NDD-ASD carrying CNVs. Most of those genes had been proven to be ASD-related genes. However, some of them (9 genes) were not proven sufficiently to correlate with ASD. By literature review and constructing protein-protein interaction networks among these 9 candidate ASD-risk genes and 102 established ASD genes obtained from the SFARI Gene database, we identified CUL4B, KCNH1, and PLA2G6 as novel possible ASD-risk genes underlying genetic NDD conditions. CONCLUSIONS: Trio-WES testing is recommended for patients with unexplained NDD-NDCs that have severe-profound NDD or multiple NDCs, particularly those with accompanying ASD and head circumference abnormality, as these independent factors may increase the likelihood of genetic diagnosis using trio-WES. Moreover, NDD patients with pathogenic variants in CUL4B, KCNH1 and PLA2G6 should be aware of potential risks of developing ASD during their disease courses.

摘要

背景:基于 trio 的全外显子组测序(trio-WES)能够鉴定致病性变异,包括拷贝数变异(CNVs),在患有不明原因的神经发育迟缓(NDD)和神经发育合并症(NDCs)的儿童中,包括自闭症谱系障碍(ASD)、癫痫和注意缺陷多动障碍。对 trio-WES 测试的 NDD-NDC 病例进行进一步的表型和基因分析,可能有助于确定与使用 trio-WES 更高诊断率相关的关键表型因素,以及与临床环境中 NDCs 相关的新的风险基因。

方法:在这项研究中,我们回顾性地对 163 名经 trio-WES 测试的 NDD-NDC 儿童进行了表型分析,以确定基因诊断组和非基因诊断组之间的表型差异。此外,我们借助西蒙斯自闭症研究基金会(Simons Foundation for Autism Research Institute,SFARI)基因数据库,对 ASD 基因进行了遗传分析,以确定遗传 NDD 情况下潜在的新的可能的 ASD 风险基因。

结果:在这 163 名患者中,82 名(82/163,50.3%)患者鉴定出致病性变异,包括 20 名患者携带 CNVs。通过对基因诊断组(82 例)和非基因诊断组(81 例)的表型变量进行多元二项逻辑回归分析,我们发现具有严重-重度 NDD 的 NDD-NDCs 病例[53/82 比 17/81,调整后的比值比(95%置信区间):4.865(2.213-10.694),调整后的 P<0.001]或具有多种 NDCs[26/82 比 8/81,调整后的比值比(95%置信区间):3.731(1.399-9.950),调整后的 P=0.009]或伴有 ASD[64/82 比 35/81,调整后的比值比(95%置信区间):3.256(1.479-7.168),调整后的 P=0.003]和头围异常[33/82 比 11/81,调整后的比值比(95%置信区间):2.788(1.148-6.774),调整后的 P=0.024]更有可能通过 trio-WES 进行基因诊断。此外,在 48 名基因诊断为 NDD-ASD 的患者中鉴定出 37 个具有单基因变异的基因,在 16 名携带 CNVs 的 NDD-ASD 患者中鉴定出 15 个剂量敏感基因。这些基因中的大多数已被证明与 ASD 相关。然而,其中一些基因(9 个)没有被充分证明与 ASD 相关。通过文献回顾和在 SFARI 基因数据库中获得的 9 个候选 ASD 风险基因和 102 个已建立的 ASD 基因之间构建蛋白质-蛋白质相互作用网络,我们确定了 CUL4B、KCNH1 和 PLA2G6 为遗传 NDD 情况下潜在的新的可能的 ASD 风险基因。

结论:建议对患有不明原因的 NDD-NDCs 且具有严重-重度 NDD 或多种 NDCs,特别是伴有 ASD 和头围异常的患者进行 trio-WES 检测,因为这些独立因素可能会增加使用 trio-WES 进行基因诊断的可能性。此外,患有 CUL4B、KCNH1 和 PLA2G6 致病性变异的 NDD 患者应在疾病过程中注意潜在的 ASD 发病风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/e26df438f4ab/13023_2024_3214_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/94eb6c66c1ba/13023_2024_3214_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/9062c5a33b5d/13023_2024_3214_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/95dd4370df9d/13023_2024_3214_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/e26df438f4ab/13023_2024_3214_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/94eb6c66c1ba/13023_2024_3214_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/9062c5a33b5d/13023_2024_3214_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/95dd4370df9d/13023_2024_3214_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ff/11103872/e26df438f4ab/13023_2024_3214_Fig4_HTML.jpg

相似文献

[1]
Phenotypic and genetic analysis of children with unexplained neurodevelopmental delay and neurodevelopmental comorbidities in a Chinese cohort using trio-based whole-exome sequencing.

Orphanet J Rare Dis. 2024-5-19

[2]
Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing.

Clin Genet. 2021-7

[3]
Meta-Analyses Support Previous and Novel Autism Candidate Genes: Outcomes of an Unexplored Brazilian Cohort.

Autism Res. 2019-11-6

[4]
Identification of novel driver risk genes in CNV loci associated with neurodevelopmental disorders.

HGG Adv. 2024-7-18

[5]
Clinical utility of exome sequencing in individuals with large homozygous regions detected by chromosomal microarray analysis.

BMC Med Genet. 2018-3-20

[6]
Clinical Characterization of Copy Number Variants Associated With Neurodevelopmental Disorders in a Large-scale Multiancestry Biobank.

JAMA Psychiatry. 2022-3-1

[7]
Clinical use of whole exome sequencing in children with developmental delay/intellectual disability.

Pediatr Neonatol. 2024-9

[8]
Reanalysis of whole-exome sequencing (WES) data of children with neurodevelopmental disorders in a standard patient care context.

Eur J Pediatr. 2024-1

[9]
Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder.

Front Genet. 2018-11-30

[10]
Identification of genetic causes in children with unexplained epilepsy based on trio-whole exome sequencing.

Clin Genet. 2024-8

引用本文的文献

[1]
A Case of Infantile Epileptic Spasms Syndrome with the Mutation and Review of βII-Spectrin Variants.

Genes (Basel). 2025-7-29

[2]
Trio-whole exome sequencing reveals the importance of de novo variants in children with intellectual disability and developmental delay.

Sci Rep. 2024-11-11

本文引用的文献

[1]
HEC-ASD: a hybrid ensemble-based classification model for predicting autism spectrum disorder disease genes.

BMC Bioinformatics. 2022-12-21

[2]
Comparing the Indian Autism Screening Questionnaire (IASQ) and the Indian Scale for Assessment of Autism (ISAA) with the Childhood Autism Rating Scale-Second Edition (CARS2) in Indian settings.

PLoS One. 2022

[3]
SFARI genes and where to find them; modelling Autism Spectrum Disorder specific gene expression dysregulation with RNA-seq data.

Sci Rep. 2022-6-16

[4]
Diagnostic yield of patients with undiagnosed intellectual disability, global developmental delay and multiples congenital anomalies using karyotype, microarray analysis, whole exome sequencing from Central Brazil.

PLoS One. 2022

[5]
Autism spectrum disorder and comorbid neurodevelopmental disorders (ASD-NDDs): Clinical and genetic profile of a pediatric cohort.

Clin Chim Acta. 2022-1-1

[6]
Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models.

Front Neural Circuits. 2021

[7]
Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG).

Genet Med. 2021-11

[8]
Confirming the contribution and genetic spectrum of de novo mutation in infantile spasms: Evidence from a Chinese cohort.

Mol Genet Genomic Med. 2021-6

[9]
Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing.

Clin Genet. 2021-7

[10]
A simultaneous [C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism.

Transl Psychiatry. 2021-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索