Zhang Di, Shen Zhen, Li Dehua, Ma Yingyuan, Zhao Zhiwei, Yang Xiao, Xu Shilin, Xiong Yarui, Xu Jianhong, Hu Yi
Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
J Colloid Interface Sci. 2024 Sep 15;670:385-394. doi: 10.1016/j.jcis.2024.05.092. Epub 2024 May 15.
Solid-state lithium metal batteries (SSLMBs) are promising candidates for safe and high-energy-density next-generation applications. However, harmful interfacial decomposition and uneven Li deposition lead to poor ion transport, a short cycle life, and battery failure. Herein, we propose a novel poly(ethylene oxide) (PEO)-based composite solid electrolyte (CSE) containing succinonitrile (SN) and zinc oxide (ZnO) nanoparticles (NPs), which improves interface stability through a dual mechanism. (1) By anchoring bis(trifluoromethanesulfonyl)imide (TFSI) anions to ZnO, a reliable solid electrolyte interface (SEI) later with abundant LiF can be obtained to inhibit interface decomposition. (2) The immobilization of escaping SN molecules in the SEI layer by ZnO NPs promotes the self-polymerization of SN and facilitates charge transfer through the interface. As a result, the ion conductivity of the stainless steel-symmetrical battery reaches 1.1 × 10 S cm at room temperature, and a LiFePO (LFP) full battery exhibits ultrahigh stability (800 cycles) at 0.5 C. Thus, the present study provides valuable insights for the development of advanced PEO-based SSLMBs.
固态锂金属电池(SSLMBs)是下一代安全且高能量密度应用的理想候选者。然而,有害的界面分解和不均匀的锂沉积会导致离子传输不良、循环寿命短和电池失效。在此,我们提出了一种新型的基于聚环氧乙烷(PEO)的复合固体电解质(CSE),其包含丁二腈(SN)和氧化锌(ZnO)纳米颗粒(NPs),通过双重机制提高界面稳定性。(1)通过将双(三氟甲磺酰)亚胺(TFSI)阴离子锚定到ZnO上,可以获得具有大量LiF的可靠固体电解质界面(SEI),以抑制界面分解。(2)ZnO NPs将逸出的SN分子固定在SEI层中,促进SN的自聚合,并促进电荷通过界面转移。结果,不锈钢对称电池在室温下的离子电导率达到1.1×10 S cm,LiFePO(LFP)全电池在0.5 C下表现出超高稳定性(800次循环)。因此,本研究为先进的基于PEO的SSLMBs的开发提供了有价值的见解。