Suppr超能文献

基于港湾样微流控的简易单细胞图案化策略。

A facile single-cell patterning strategy based on harbor-like microwell microfluidics.

机构信息

Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Medicine, Linyi University, Linyi 276005, People's Republic of China.

Xinjiang Key Laboratory of Signal Detection and Processing, School of Computer Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China.

出版信息

Biomed Mater. 2024 May 31;19(4). doi: 10.1088/1748-605X/ad4e83.

Abstract

Single-cell analysis is an effective method for conducting comprehensive heterogeneity studies ranging from cell phenotype to gene expression. The ability to arrange different cells in a predetermined pattern at single-cell resolution has a wide range of applications in cell-based analysis and plays an important role in facilitating interdisciplinary research by researchers in various fields. Most existing microfluidic microwell chips is a simple and straightforward method, which typically use small-sized microwells to accommodate single cells. However, this method imposes certain limitations on cells of various sizes, and the single-cell capture efficiency is relatively low without the assistance of external forces. Moreover, the microwells limit the spatiotemporal resolution of reagent replacement, as well as cell-to-cell communication. In this study, we propose a new strategy to prepare a single-cell array on a planar microchannel based on microfluidic flip microwells chip platform with large apertures (50 μm), shallow channels (50 μm), and deep microwells (50 μm). The combination of three configuration characteristics contributes to multi-cell trapping and a single-cell array within microwells, while the subsequent chip flipping accomplishes the transfer of the single-cell array to the opposite planar microchannel for cells adherence and growth. Further assisted by protein coating of bovine serum albumin and fibronectin on different layers, the single-cell capture efficiency in microwells is achieved at 92.1% ± 1%, while ultimately 85% ± 3.4% on planar microchannel. To verify the microfluidic flip microwells chip platform, the real-time and heterogeneous study of calcium release and apoptosis behaviours of single cells is carried out. To our knowledge, this is the first time that high-efficiency single-cell acquisition has been accomplished using a circular-well chip design that combines shallow channel, large aperture and deep microwell together. The chip is effective in avoiding the shearing force of high flow rates on cells, and the large apertures better allows cells to sedimentation. Therefore, this strategy owns the advantages of easy preparation and user-friendliness, which is especially valuable for researchers from different fields.

摘要

单细胞分析是一种有效的方法,可以进行从细胞表型到基因表达的全面异质性研究。以单细胞分辨率排列不同细胞的能力在基于细胞的分析中有广泛的应用,并在促进各个领域的研究人员的跨学科研究方面发挥着重要作用。大多数现有的微流控微井芯片是一种简单直接的方法,通常使用小尺寸的微井来容纳单个细胞。然而,这种方法对各种大小的细胞有一定的限制,并且在没有外力辅助的情况下,单细胞捕获效率相对较低。此外,微井限制了试剂替换的时空分辨率以及细胞间的通信。在本研究中,我们提出了一种新的策略,即在具有大孔径(50 μm)、浅通道(50 μm)和深微井(50 μm)的微流控翻转微井芯片平台上制备基于平面微通道的单细胞阵列。这三个结构特征的组合有助于在微井中捕获多个细胞和单细胞阵列,而随后的芯片翻转则将单细胞阵列转移到相反的平面微通道上,以便细胞附着和生长。进一步通过在不同层上进行牛血清白蛋白和纤维连接蛋白的蛋白质涂层,在微井中实现了 92.1%±1%的单细胞捕获效率,而在平面微通道中最终达到 85%±3.4%。为了验证微流控翻转微井芯片平台,我们进行了单细胞钙释放和凋亡行为的实时和异质性研究。据我们所知,这是首次使用结合浅通道、大孔径和深微井的圆形井芯片设计实现高效单细胞获取。该芯片有效地避免了高速率对细胞的剪切力,并且大孔径更有利于细胞沉淀。因此,该策略具有易于制备和用户友好的优点,这对于来自不同领域的研究人员尤其有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验