Suppr超能文献

利用临床叙事感知的预训练语言模型预测急诊科患者处置和非计划性复诊。

Using a clinical narrative-aware pre-trained language model for predicting emergency department patient disposition and unscheduled return visits.

机构信息

Graduate Institute of Data Science, Taipei Medical University, Taipei City, Taiwan.

Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.

出版信息

J Biomed Inform. 2024 Jul;155:104657. doi: 10.1016/j.jbi.2024.104657. Epub 2024 May 19.

Abstract

The increasing prevalence of overcrowding in Emergency Departments (EDs) threatens the effective delivery of urgent healthcare. Mitigation strategies include the deployment of monitoring systems capable of tracking and managing patient disposition to facilitate appropriate and timely care, which subsequently reduces patient revisits, optimizes resource allocation, and enhances patient outcomes. This study used ∼ 250,000 emergency department visit records from Taipei Medical University-Shuang Ho Hospital to develop a natural language processing model using BlueBERT, a biomedical domain-specific pre-trained language model, to predict patient disposition status and unplanned readmissions. Data preprocessing and the integration of both structured and unstructured data were central to our approach. Compared to other models, BlueBERT outperformed due to its pre-training on a diverse range of medical literature, enabling it to better comprehend the specialized terminology, relationships, and context present in ED data. We found that translating Chinese-English clinical narratives into English and textualizing numerical data into categorical representations significantly improved the prediction of patient disposition (AUROC = 0.9014) and 72-hour unscheduled return visits (AUROC = 0.6475). The study concludes that the BlueBERT-based model demonstrated superior prediction capabilities, surpassing the performance of prior patient disposition predictive models, thus offering promising applications in the realm of ED clinical practice.

摘要

急诊科(ED)过度拥挤的现象日益普遍,这威胁到紧急医疗服务的有效提供。缓解策略包括部署能够跟踪和管理患者处置情况的监测系统,以促进提供适当和及时的护理,从而减少患者复诊次数,优化资源分配,并改善患者预后。本研究使用了来自台北医学大学双和医院的约 25 万份急诊就诊记录,使用 BlueBERT (一种针对生物医学领域的预训练语言模型)开发了一种自然语言处理模型,以预测患者处置状态和非计划性再入院。数据预处理和结构化与非结构化数据的整合是我们方法的核心。与其他模型相比,BlueBERT 表现更好,因为它在多种医学文献上进行了预训练,使其能够更好地理解 ED 数据中的专业术语、关系和上下文。我们发现,将中英文临床叙述翻译成英文,并将数值数据文本化为类别表示,显著提高了患者处置(AUROC=0.9014)和 72 小时内非计划性复诊(AUROC=0.6475)的预测效果。研究得出结论,基于 BlueBERT 的模型表现出了卓越的预测能力,超过了之前患者处置预测模型的性能,因此在 ED 临床实践领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验