Wei Shudan, Kale Girish, Lai Xiaojun
School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
Small. 2024 Sep;20(38):e2401573. doi: 10.1002/smll.202401573. Epub 2024 May 21.
2D transition metal borides, known as MBenes, have attracted considerable attention due to their exceptional properties. This study explores the feasibility of aluminum (Al) etching from MoAlB using environmentally friendly and sustainable fluoride-free dilute acidic/alkaline solutions at room temperature, revealing its thermodynamic and kinetic viability. Furthermore, it is found that complete removal of Al can be achieved in dilute alkaline reagent under hydrothermal conditions, yielding pristine single/few-layered MBene-MoB for the first time, while acidic solutions result in ≈33% etching rates. XRD refinement, which tracks aluminum removal from 0% to 100%, reveals transient metastable phases of MoAlB (x < 0.5) in the initial etching stages, evolving into relatively stable pure MoAlB structures with 50% Al deficiency, serving as a precursor to MBenes. The subsequent loss of Al results in a 2D MBene-MoB structure. DFT calculations confirm excellent conductivity for MoAlB, MoAlB (x = 0-1), and MBene-MoB. Remarkably, MBene-MoB exhibits superior supercapacitor performance with a 4025.60 mF cm/201.28 F g capacitance. Simulations validate rapid electrolyte diffusion in layered MBene-MoB, contributing significantly to enhanced capacitance. Additionally, in the hydrogen evolution reaction (HER), MBene-MoB demonstrates superior catalytic activity compared to the precursor MoAlB and commercial MoB. Calculations suggest the potential for enhancing HER through surface modulation, considering its suboptimal hydrogen adsorption energy.
二维过渡金属硼化物,即所谓的M烯,因其卓越的性能而备受关注。本研究探索了在室温下使用环保且可持续的无氟稀酸/碱溶液从MoAlB中蚀刻铝(Al)的可行性,揭示了其热力学和动力学可行性。此外,研究发现,在水热条件下,在稀碱性试剂中可以实现Al的完全去除,首次得到原始的单层/少层M烯-MoB,而酸性溶液的蚀刻速率约为33%。XRD精修追踪了从0%到100%的铝去除情况,揭示了在初始蚀刻阶段MoAlB(x < 0.5)的瞬态亚稳相,演变成具有50% Al缺陷的相对稳定的纯MoAlB结构,作为M烯的前驱体。随后Al的损失导致二维M烯-MoB结构。DFT计算证实了MoAlB、MoAlB(x = 0 - 1)和M烯-MoB具有优异的导电性。值得注意的是,M烯-MoB表现出卓越的超级电容器性能,电容为4025.60 mF/cm²/201.28 F/g。模拟验证了层状M烯-MoB中电解质的快速扩散,这对增强电容有显著贡献。此外,在析氢反应(HER)中,M烯-MoB与前驱体MoAlB和商业MoB相比表现出卓越的催化活性。考虑到其次优的氢吸附能,计算表明通过表面调制增强HER的潜力。