Dan Tingting, Dere Mustafa, Kim Won Hwa, Kim Minjeong, Wu Guorong
Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Computer Science and Engineering / Graduate School of AI, POSTECH, Pohang, Korea 37673, South Korea.
Med Image Anal. 2024 Jul;95:103210. doi: 10.1016/j.media.2024.103210. Epub 2024 May 17.
Mounting evidence shows that Alzheimer's disease (AD) is characterized by the propagation of tau aggregates throughout the brain in a prion-like manner. Since current pathology imaging technologies only provide a spatial mapping of tau accumulation, computational modeling becomes indispensable in analyzing the spatiotemporal propagation patterns of widespread tau aggregates from the longitudinal data. However, current state-of-the-art works focus on the longitudinal change of focal patterns, lacking a system-level understanding of the tau propagation mechanism that can explain and forecast the cascade of tau accumulation. To address this limitation, we conceptualize that the intercellular spreading of tau pathology forms a dynamic system where each node (brain region) is ubiquitously wired with other nodes while interacting with the build-up of pathological burdens. In this context, we formulate the biological process of tau spreading in a principled potential energy transport model (constrained by brain network topology), which allows us to develop an explainable neural network for uncovering the spatiotemporal dynamics of tau propagation from the longitudinal tau-PET scans. Specifically, we first translate the transport equation into a GNN (graph neural network) backbone, where the spreading flows are essentially driven by the potential energy of tau accumulation at each node. Conventional GNNs employ a l-norm graph smoothness prior, resulting in nearly equal potential energies across nodes, leading to vanishing flows. Following this clue, we introduce the total variation (TV) into the graph transport model, where the nature of system's Euler-Lagrange equations is to maximize the spreading flow while minimizing the overall potential energy. On top of this min-max optimization scenario, we design a generative adversarial network (GAN-like) to characterize the TV-based spreading flow of tau aggregates, coined TauFlowNet. We evaluate our TauFlowNet on ADNI and OASIS datasets in terms of the prediction accuracy of future tau accumulation and explore the propagation mechanism of tau aggregates as the disease progresses. Compared to the current counterpart methods, our physics-informed deep model yields more accurate and interpretable results, demonstrating great potential in discovering novel neurobiological mechanisms through the lens of machine learning.
越来越多的证据表明,阿尔茨海默病(AD)的特征是tau蛋白聚集体以朊病毒样方式在全脑传播。由于目前的病理学成像技术仅提供tau蛋白积累的空间映射,因此计算建模在分析来自纵向数据的广泛tau蛋白聚集体的时空传播模式中变得不可或缺。然而,当前的先进工作侧重于局部模式的纵向变化,缺乏对tau蛋白传播机制的系统层面理解,而这种理解能够解释和预测tau蛋白积累的级联反应。为了解决这一局限性,我们设想tau蛋白病理学的细胞间传播形成了一个动态系统,其中每个节点(脑区)在与病理负担的积累相互作用时,与其他节点普遍相连。在此背景下,我们在一个有原则的势能传输模型(受脑网络拓扑结构约束)中阐述tau蛋白传播的生物学过程,这使我们能够开发一个可解释的神经网络,以从纵向tau-PET扫描中揭示tau蛋白传播的时空动态。具体而言,我们首先将传输方程转化为一个GNN(图神经网络)主干,其中传播流本质上由每个节点处tau蛋白积累的势能驱动。传统的GNN采用l-范数图平滑先验,导致各节点的势能几乎相等,从而导致流消失。顺着这条线索,我们将总变差(TV)引入图传输模型,其中系统的欧拉-拉格朗日方程的本质是在最小化总势能的同时最大化传播流。在这个最小-最大优化场景之上,我们设计了一个生成对抗网络(类GAN)来表征基于TV的tau蛋白聚集体传播流,即TauFlowNet。我们在ADNI和OASIS数据集上评估我们的TauFlowNet在未来tau蛋白积累预测准确性方面的表现,并探索tau蛋白聚集体在疾病进展过程中的传播机制。与当前的对应方法相比,我们的物理信息深度模型产生了更准确和可解释的结果,展示了通过机器学习视角发现新的神经生物学机制的巨大潜力。