Suppr超能文献

源自金属有机框架的层状双氢氧化物基电极材料:合成及其在超级电容器中的应用

Layered double hydroxide-based electrode materials derived from metal-organic frameworks: synthesis and applications in supercapacitors.

作者信息

Luo Fujuan, San Xiaoguang, Wang Yisong, Meng Dan, Tao Kai

机构信息

School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.

出版信息

Dalton Trans. 2024 Jun 25;53(25):10403-10415. doi: 10.1039/d4dt01344a.

Abstract

Metal-organic frameworks (MOFs) have emerged as promising electrode materials for supercapacitors (SCs) due to their highly porous structures, tunable chemical compositions, and diverse morphologies. However, their applications are hindered by low conductivity and poor cycling performance. A novel approach for resolving this issue involves the growth of layered double hydroxides (LDHs) using MOFs as efficient templates or precursors for electrode material preparation. This method effectively enhances the stability, electrical conductivity, and mass transport ability of MOFs. The MOF-derived LDH exhibits a well-defined porous micro-/nano-structure, facilitating the dispersion of active sites and preventing the aggregation of LDHs. Firstly, this paper introduces synthesis strategies for converting MOFs into LDHs. Subsequently, recent research progress in MOF-derived LDHs encompassing pristine LDH powders, LDH composites, and LDH-based arrays, along with their applications in SCs, is overviewed. Finally, the challenges associated with MOF-derived LDH electrode materials and potential solutions are discussed.

摘要

金属有机框架材料(MOFs)因其高度多孔的结构、可调节的化学成分和多样的形态,已成为超级电容器(SCs)颇具前景的电极材料。然而,其应用受到低导电性和较差循环性能的阻碍。解决这一问题的一种新方法是利用MOFs作为制备电极材料的有效模板或前驱体来生长层状双氢氧化物(LDHs)。该方法有效地提高了MOFs的稳定性、导电性和传质能力。MOF衍生的LDH呈现出明确的多孔微/纳米结构,有利于活性位点的分散并防止LDHs聚集。首先,本文介绍了将MOFs转化为LDHs的合成策略。随后,综述了MOF衍生的LDHs在原始LDH粉末、LDH复合材料和基于LDH的阵列方面的最新研究进展,以及它们在超级电容器中的应用。最后,讨论了MOF衍生的LDH电极材料相关的挑战及潜在解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验