Landa Guillermo, Aguerri Laura, Irusta Silvia, Mendoza Gracia, Arruebo Manuel
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain.
Int J Biol Macromol. 2024 Jun;271(Pt 1):132563. doi: 10.1016/j.ijbiomac.2024.132563. Epub 2024 May 21.
Staphylococcus aureus possesses the ability to become pathogenic, leading to severe and life-threatening infections. Its methicillin-resistant variant MRSA has garnered high-priority status due to its increased morbidity and associated mortality. This emphasizes the urgency for novel anti-staphylococcal agents. The bacteriocin lysostaphin stands out for its remarkable bactericidal activity against S. aureus, including MRSA, outperforming conventional antibiotics. However, the clinical application of lysostaphin faces challenges, including enzymatic activity loss under physiological conditions and potential immunogenicity. This study introduces a novel approach by encapsulating lysostaphin within polylactic-co-glycolic acid (PLGA) nanoparticles, a biodegradable copolymer known for its biocompatibility and sustained drug release ability. The study assesses the antimicrobial activity of lysostaphin-loaded PLGA nanoparticles against different S. aureus strains, and we also used GFP-expressing S. aureus for facilitating its traceability in planktonic, biofilm, and intracellular infection models. The results showed the significant reduction in bacteria viability both in planktonic and biofilm states. The in vitro intracellular infection model demonstrated the significantly enhanced efficiency of the developed nanoparticles compared to the treatment with the free bacteriocin. This research presents lysostaphin encapsulation within PLGA nanoparticles and offers promising avenues for enhancing lysostaphin's therapeutic efficacy against S. aureus infections.
金黄色葡萄球菌具有致病能力,可导致严重且危及生命的感染。其耐甲氧西林变体MRSA因其发病率增加和相关死亡率而获得了高度优先地位。这凸显了新型抗葡萄球菌药物的紧迫性。细菌素溶葡萄球菌素因其对包括MRSA在内的金黄色葡萄球菌具有显著的杀菌活性而脱颖而出,其表现优于传统抗生素。然而,溶葡萄球菌素的临床应用面临挑战,包括在生理条件下酶活性丧失和潜在的免疫原性。本研究引入了一种新方法,即将溶葡萄球菌素包裹在聚乳酸-乙醇酸共聚物(PLGA)纳米颗粒中,PLGA是一种以生物相容性和持续药物释放能力而闻名的可生物降解共聚物。该研究评估了负载溶葡萄球菌素的PLGA纳米颗粒对不同金黄色葡萄球菌菌株的抗菌活性,并且我们还使用了表达绿色荧光蛋白的金黄色葡萄球菌来促进其在浮游、生物膜和细胞内感染模型中的可追踪性。结果表明,在浮游和生物膜状态下细菌活力均显著降低。体外细胞内感染模型表明,与游离细菌素治疗相比,所开发的纳米颗粒的效率显著提高。本研究介绍了将溶葡萄球菌素包裹在PLGA纳米颗粒中的方法,并为提高溶葡萄球菌素对金黄色葡萄球菌感染的治疗效果提供了有前景的途径。