Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
School of Chemistry, University College Dublin, Belfield, Dublin, Ireland.
Nat Commun. 2024 May 23;15(1):4386. doi: 10.1038/s41467-024-48535-3.
Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.
唾液酸转运蛋白(Sialin)是溶质载体 17(SLC17)家族的成员,其独特之处在于它不仅能够利用 pH 驱动的机制来运输唾液酸,还能够利用膜电位驱动的机制将单酸和二酸神经递质,如谷氨酸和 N-乙酰天门冬氨酸谷氨酸(NAAG),转运到突触小泡中。虽然大多数转运蛋白仅利用其中一种机制,但 Sialin 如何同时利用这两种机制来转运底物的结构基础尚不清楚。在这里,我们展示了人源 Sialin 的低温电子显微镜结构:apo 胞质溶胶开放型、apo 腔道开放型、NAAG 结合型和抑制剂结合型。我们的结构表明,带正电荷的胞质溶胶开放入口可容纳 NAAG 或 Sialin 抑制剂 Fmoc-Leu-OH,而其腔道内腔可能结合唾液酸。此外,功能分析和分子动力学模拟确定了结合唾液酸和 NAAG 的关键残基。因此,我们的研究结果揭示了 NAAG 和唾液酸转运的基本构象状态,展示了 SLC17 转运蛋白的工作模型。