NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands.
Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
Nat Microbiol. 2024 Jul;9(7):1778-1791. doi: 10.1038/s41564-024-01696-9. Epub 2024 May 23.
Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism. Efficient and selective binding of the target lipid II, a cell wall precursor with an irreplaceable pyrophosphate, is achieved by the oligomerization of plectasin into dense supra-structures that only form on bacterial membranes that comprise lipid II. Oligomerization and target binding of plectasin are interdependent and are enhanced by the coordination of calcium ions to plectasin's prominent anionic patch, causing allosteric changes that markedly improve the activity of the antibiotic. Structural knowledge of how host defence peptides impair cell wall synthesis will likely enable the development of superior drug candidates.
抗微生物药物耐药性是导致死亡的主要原因之一,因此需要开发新的抗生素。真菌抗生素磷霉素是一种真核宿主防御肽,可阻断细菌细胞壁的合成。在这里,我们使用固态核磁共振、原子力显微镜和活性测定的组合,表明磷霉素使用钙敏感的超分子杀伤机制。通过磷霉素聚集成仅在包含脂质 II 的细菌膜上形成的密集超结构,实现了对靶脂质 II(一种具有不可替代焦磷酸酯的细胞壁前体)的有效和选择性结合,脂质 II 是一种细胞壁前体。磷霉素的寡聚化和靶结合是相互依存的,并且通过钙离子与磷霉素显著的阴离子斑的协调而增强,引起变构变化,从而显著提高抗生素的活性。宿主防御肽如何破坏细胞壁合成的结构知识可能会使更优秀的药物候选物的开发成为可能。