文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine learning-based health environmental-clinical risk scores in European children.

作者信息

Guimbaud Jean-Baptiste, Siskos Alexandros P, Sakhi Amrit Kaur, Heude Barbara, Sabidó Eduard, Borràs Eva, Keun Hector, Wright John, Julvez Jordi, Urquiza Jose, Gützkow Kristine Bjerve, Chatzi Leda, Casas Maribel, Bustamante Mariona, Nieuwenhuijsen Mark, Vrijheid Martine, López-Vicente Mónica, de Castro Pascual Montserrat, Stratakis Nikos, Robinson Oliver, Grazuleviciene Regina, Slama Remy, Alemany Silvia, Basagaña Xavier, Plantevit Marc, Cazabet Rémy, Maitre Léa

机构信息

ISGlobal, Barcelona, Spain.

Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622, Villeurbanne, France.

出版信息

Commun Med (Lond). 2024 May 23;4(1):98. doi: 10.1038/s43856-024-00513-y.


DOI:10.1038/s43856-024-00513-y
PMID:38783062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11116423/
Abstract

BACKGROUND: Early life environmental stressors play an important role in the development of multiple chronic disorders. Previous studies that used environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on health are limited by the diversity of exposures included, especially for early life determinants. We used machine learning methods to build early life exposome risk scores for three health outcomes using environmental, molecular, and clinical data. METHODS: In this study, we analyzed data from 1622 mother-child pairs from the HELIX European birth cohorts, using over 300 environmental, 100 child peripheral, and 18 mother-child clinical markers to compute environmental-clinical risk scores (ECRS) for child behavioral difficulties, metabolic syndrome, and lung function. ECRS were computed using LASSO, Random Forest and XGBoost. XGBoost ECRS were selected to extract local feature contributions using Shapley values and derive feature importance and interactions. RESULTS: ECRS captured 13%, 50% and 4% of the variance in mental, cardiometabolic, and respiratory health, respectively. We observed no significant differences in predictive performances between the above-mentioned methods.The most important predictive features were maternal stress, noise, and lifestyle exposures for mental health; proteome (mainly IL1B) and metabolome features for cardiometabolic health; child BMI and urine metabolites for respiratory health. CONCLUSIONS: Besides their usefulness for epidemiological research, our risk scores show great potential to capture holistic individual level non-hereditary risk associations that can inform practitioners about actionable factors of high-risk children. As in the post-genetic era personalized prevention medicine will focus more and more on modifiable factors, we believe that such integrative approaches will be instrumental in shaping future healthcare paradigms.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/7ad520f5e61a/43856_2024_513_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/fea300110166/43856_2024_513_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/3a9ac682addc/43856_2024_513_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/1f4b4a2a227b/43856_2024_513_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/0058163c0ade/43856_2024_513_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/9eb5180277d1/43856_2024_513_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/5ed4320e95a1/43856_2024_513_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/7ad520f5e61a/43856_2024_513_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/fea300110166/43856_2024_513_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/3a9ac682addc/43856_2024_513_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/1f4b4a2a227b/43856_2024_513_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/0058163c0ade/43856_2024_513_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/9eb5180277d1/43856_2024_513_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/5ed4320e95a1/43856_2024_513_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb3/11116423/7ad520f5e61a/43856_2024_513_Fig7_HTML.jpg

相似文献

[1]
Machine learning-based health environmental-clinical risk scores in European children.

Commun Med (Lond). 2024-5-23

[2]
Protocol of the Nutritional, Psychosocial, and Environmental Determinants of Neurodevelopment and Child Mental Health (COINCIDE) study.

Wellcome Open Res. 2024-11-22

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
The Minderoo-Monaco Commission on Plastics and Human Health.

Ann Glob Health. 2023

[5]
A machine-learning exploration of the exposome from preconception in early childhood atopic eczema, rhinitis and wheeze development.

Environ Res. 2024-6-1

[6]
Human Early Life Exposome (HELIX) study: a European population-based exposome cohort.

BMJ Open. 2018-9-10

[7]
Early-life environmental exposure determinants of child behavior in Europe: A longitudinal, population-based study.

Environ Int. 2021-8

[8]
Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM, BC, NO, and O: An Analysis of European Cohorts in the ELAPSE Project.

Res Rep Health Eff Inst. 2021-9

[9]
Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries.

Environ Pollut. 2021-9-1

[10]
Social Susceptibility to Multiple Air Pollutants in Cardiovascular Disease.

Res Rep Health Eff Inst. 2021-7

引用本文的文献

[1]
Modeling the importance of life exposure factors on memory performance in diverse older adults: A machine learning approach.

Alzheimers Dement. 2025-8

[2]
Global research trends on the human exposome: a bibliometric analysis (2005-2024).

Environ Sci Pollut Res Int. 2025-3

[3]
Machine learning and spatio-temporal analysis of meteorological factors on waterborne diseases in Bangladesh.

PLoS Negl Trop Dis. 2025-1-16

本文引用的文献

[1]
Unlocking the Potential: Amino Acids' Role in Predicting and Exploring Therapeutic Avenues for Type 2 Diabetes Mellitus.

Metabolites. 2023-9-15

[2]
Multi-omics signatures of the human early life exposome.

Nat Commun. 2022-11-21

[3]
Assessing How Social Exposures Are Integrated in Exposome Research: A Scoping Review.

Environ Health Perspect. 2022-11

[4]
Metabolic Syndrome and Its Components Are Associated With Altered Amino Acid Profile in Chinese Han Population.

Front Endocrinol (Lausanne). 2021

[5]
Exposome-wide Association Study for Metabolic Syndrome.

Front Genet. 2021-12-7

[6]
Advancing tools for human early lifecourse exposome research and translation (ATHLETE): Project overview.

Environ Epidemiol. 2021-10-1

[7]
Spectrum of Apolipoprotein AI and Apolipoprotein AII Proteoforms and Their Associations With Indices of Cardiometabolic Health: The CARDIA Study.

J Am Heart Assoc. 2021-9-7

[8]
Estimating Aggregate Environmental Risk Score in Psychiatry: The Exposome Score for Schizophrenia.

Front Psychiatry. 2021-5-28

[9]
Genome-wide DNA methylation patterns associated with general psychopathology in children.

J Psychiatr Res. 2021-8

[10]
Maternal mental health and early childhood development: Exploring critical periods and unique sources of support.

Infant Ment Health J. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索