Suppr超能文献

基于双向复制粘贴的半监督面部痤疮分割

Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy-Paste.

作者信息

Kim Semin, Yoon Huisu, Lee Jongha

机构信息

AI R&D Center, lululab, Dosan Dae-Ro 318, Seoul 06054, Republic of Korea.

出版信息

Diagnostics (Basel). 2024 May 17;14(10):1040. doi: 10.3390/diagnostics14101040.

Abstract

Facial acne is a prevalent dermatological condition regularly observed in the general population. However, it is important to detect acne early as the condition can worsen if not treated. For this purpose, deep-learning-based methods have been proposed to automate detection, but acquiring acne training data is not easy. Therefore, this study proposes a novel deep learning model for facial acne segmentation utilizing a semi-supervised learning method known as bidirectional copy-paste, which synthesizes images by interchanging foreground and background parts between labeled and unlabeled images during the training phase. To overcome the lower performance observed in the labeled image training part compared to the previous methods, a new framework was devised to directly compute the training loss based on labeled images. The effectiveness of the proposed method was evaluated against previous semi-supervised learning methods using images cropped from facial images at acne sites. The proposed method achieved a Dice score of 0.5205 in experiments utilizing only 3% of labels, marking an improvement of 0.0151 to 0.0473 in Dice score over previous methods. The proposed semi-supervised learning approach for facial acne segmentation demonstrated an improvement in performance, offering a novel direction for future acne analysis.

摘要

面部痤疮是一种在普通人群中经常观察到的常见皮肤病。然而,尽早发现痤疮很重要,因为如果不治疗,病情可能会恶化。为此,已经提出了基于深度学习的方法来实现自动检测,但获取痤疮训练数据并不容易。因此,本研究提出了一种用于面部痤疮分割的新型深度学习模型,该模型利用一种称为双向复制粘贴的半监督学习方法,在训练阶段通过在标记图像和未标记图像之间交换前景和背景部分来合成图像。为了克服与先前方法相比在标记图像训练部分中观察到的较低性能,设计了一个新框架来直接基于标记图像计算训练损失。使用从痤疮部位的面部图像裁剪的图像,将所提出方法的有效性与先前的半监督学习方法进行了评估。在所提出的方法在仅使用3%的标签的实验中实现了0.5205的骰子系数得分,比先前方法的骰子系数得分提高了0.0151至0.0473。所提出的用于面部痤疮分割的半监督学习方法表现出性能上的改进,为未来的痤疮分析提供了一个新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1571/11120497/a6f4b17c9198/diagnostics-14-01040-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验