Wang Shiheng, Miao Zhipeng, Yang Jing, Gu Zhenkun, Li Pengwei, Zhang Yiqiang, Song Yanlin
College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering, Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl. 2024 Aug 5;63(32):e202407192. doi: 10.1002/anie.202407192. Epub 2024 Jul 9.
Formamidinium-lead triiodide (FAPbI) perovskite holds promise as a prime candidate in the realm of perovskite photovoltaics. However, the photo-active α-FAPbI phase, existing as a metastable state, is observable solely at elevated temperatures and is susceptible to degradation into the δ-phase in ambient air. Therefore, the attainment of phase-stable α-FAPbI in ambient conditions has become a crucial objective in perovskite research. Here, we proposed an efficient conversion process of PbI into the α-FAPbI perovskites in ambient air. This conversion was facilitated by the introduction of chelating molecules, which interacted with PbI to form an intermediate phase. Due to the reduced formation barrier resulting from the altered reaction pathway, this stable intermediate phase transitioned directly into α-FAPbI upon the deposition of the organic cation solution, effectively bypassing the formation of δ-FAPbI. Consequently, the ambient-fabricated FAPbI perovskite solar cells (PSCs) exhibited an outstanding power conversion efficiency of 25.08 %, along with a high open-circuit voltage of 1.19 V. Furthermore, the unencapsulated devices demonstrated remarkable environmental stability. Notably, this innovative approach promises broad applicability across various chelating molecules, opening new avenues for further progress in the ambient air fabrication of FAPbI PSCs.
碘化甲脒铅(FAPbI)钙钛矿有望成为钙钛矿光伏领域的主要候选材料。然而,作为亚稳态存在的光活性α-FAPbI相仅在高温下才可观察到,并且在环境空气中易降解为δ相。因此,在环境条件下实现相稳定的α-FAPbI已成为钙钛矿研究中的一个关键目标。在此,我们提出了一种在环境空气中将PbI高效转化为α-FAPbI钙钛矿的过程。这种转化通过引入螯合分子得以促进,这些螯合分子与PbI相互作用形成中间相。由于反应途径改变导致形成势垒降低,这种稳定的中间相在沉积有机阳离子溶液后直接转变为α-FAPbI,有效绕过了δ-FAPbI的形成。因此,在环境条件下制备的FAPbI钙钛矿太阳能电池(PSC)表现出25.08%的出色功率转换效率以及1.19 V的高开路电压。此外,未封装的器件展现出显著的环境稳定性。值得注意的是,这种创新方法有望广泛适用于各种螯合分子,为FAPbI PSC在环境空气中制备方面的进一步发展开辟新途径。