IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jul;71(7):831-841. doi: 10.1109/TUFFC.2024.3404997. Epub 2024 Jul 9.
Wearable ultrasound (US) is a novel sensing approach that shows promise in multiple application domains, and specifically in hand gesture recognition (HGR). In fact, US enables to collect information from deep musculoskeletal structures at high spatiotemporal resolution and high signal-to-noise ratio, making it a perfect candidate to complement surface electromyography for improved accuracy performance and on-the-edge classification. However, existing wearable solutions for US-based gesture recognition are not sufficiently low power for continuous, long-term operation. On top of that, practical hardware limitations of wearable US devices (limited power budget, reduced wireless throughput, and restricted computational power) set the need for the compressed size of models for feature extraction and classification. To overcome these limitations, this article presents a novel end-to-end approach for feature extraction from raw musculoskeletal US data suited for edge computing, coupled with an armband for HGR based on a truly wearable (12 cm2, 9 g), ultralow-power (ULP) (16 mW) US probe. The proposed approach uses a 1-D convolutional autoencoder (CAE) to compress raw US data by 20× while preserving the main amplitude features of the envelope signal. The latent features of the autoencoder are used to train an XGBoost classifier for HGR on datasets collected with a custom US armband, considering armband removal/repositioning in between sessions. Our approach achieves a classification accuracy of 96%. Furthermore, the proposed unsupervised feature extraction approach offers generalization capabilities for intersubject use, as demonstrated by testing the pretrained encoder on a different subject and conducting posttraining analysis, revealing that the operations performed by the encoder are subject-independent. The autoencoder is also quantized to 8-bit integers and deployed on a ULP wearable US probe along with the XGBoost classifier, allowing for a gesture recognition rate ≥ 25 Hz and leading to 21% lower power consumption [at 30 frames/s (FPS)] compared to the conventional approach (raw data transmission and remote processing).
可穿戴式超声(US)是一种新兴的传感方法,在多个应用领域具有广阔的应用前景,特别是在手势识别(HGR)领域。实际上,US 能够以高时空分辨率和高信噪比从深部肌肉骨骼结构中采集信息,使其成为补充表面肌电图以提高准确性和边缘分类的理想选择。然而,现有的基于 US 的手势识别可穿戴解决方案的功耗还不足以实现连续、长期运行。除此之外,可穿戴式 US 设备的实际硬件限制(有限的功率预算、降低的无线吞吐量和受限的计算能力)需要对特征提取和分类的模型进行压缩。为了克服这些限制,本文提出了一种新颖的端到端方法,用于从原始肌肉骨骼 US 数据中提取特征,适用于边缘计算,并结合基于真正可穿戴(12cm2,9g)、超低功耗(ULP)(16mW)US 探头的 HGR 臂带。所提出的方法使用一维卷积自动编码器(CAE)将原始 US 数据压缩 20 倍,同时保留包络信号的主要幅度特征。自动编码器的潜在特征用于在带有自定义 US 臂带的数据集上训练 XGBoost 分类器进行 HGR,同时考虑到会话之间臂带的移除/重新定位。我们的方法实现了 96%的分类准确率。此外,所提出的无监督特征提取方法具有用于受试者间使用的泛化能力,通过在不同受试者上测试预训练的编码器并进行后训练分析来证明这一点,结果表明编码器执行的操作与受试者无关。自动编码器也被量化为 8 位整数,并与 XGBoost 分类器一起部署在 ULP 可穿戴 US 探头中,允许识别率≥25Hz 的手势,与传统方法(原始数据传输和远程处理)相比,功耗降低 21%(在 30FPS 时)。