Suppr超能文献

一种仿生视觉检测模型:采用分数阶尖峰神经元电路实现的事件驱动 LGMDs。

A Biomimetic Visual Detection Model: Event-Driven LGMDs Implemented With Fractional Spiking Neuron Circuits.

出版信息

IEEE Trans Biomed Eng. 2024 Oct;71(10):2978-2990. doi: 10.1109/TBME.2024.3404976. Epub 2024 Sep 19.

Abstract

OBJECTIVE

Lobula giant motion detectors (LGMDs) in locusts effectively predict collisions and trigger avoidance, with potential applications in autonomous driving and UAVs. Research on LGMD characteristics splits into two views: one focusing on the presynaptic visual pathway, the other on the postsynaptic LGMD neurons. Both perspectives have support, leading to two computational models, but they lack a biophysical description of the individual LGMD neuron behavior. This paper aims to mimic and explain LGMD behavior based on fractional spiking neurons (FSNs) and construct a biomimetic visual model for the LGMD compatible with these characteristics.

METHODS

We implement the visual model using an event camera to simulate photoreceptors and follow the ON/OFF visual pathway, incorporating lateral inhibition to mimic the LGMD system from the bottom up. Second, most computational models of motion perception use only the dendrites within the LGMD neurons as the ideal pathway for linear summation, ignoring dendritic effects inducing neuronal properties. Thus, we introduce FSN circuits by altering dendritic morphological parameters to simulate multi-scale spike frequency adaptation (SFA) observed in LGMDs. Additionally, we add one more circuit of dendritic trees into the FSNs to be compatible with the postsynaptic feed-forward inhibition (FFI) in LGMD neurons, providing a novel explanatory and predictive model.

RESULTS

We test that the event-driven biomimetic visual model can achieve collision detection and looming selection in different complex scenes, especially fast-moving objects.

摘要

目的

蝗虫中的巨视动检测器 (LGMDs) 可有效预测碰撞并触发回避,在自动驾驶和无人机中具有潜在应用。LGMD 特性的研究分为两种视角:一种关注于突触前视觉通路,另一种关注于突触后 LGMD 神经元。这两种观点都有支持,导致了两种计算模型,但它们缺乏对单个 LGMD 神经元行为的生物物理描述。本文旨在基于分数阶神经元 (FSN) 进行模拟和解释 LGMD 行为,并构建与这些特性兼容的仿生 LGMD 视觉模型。

方法

我们使用事件相机实现视觉模型,以模拟光感受器并遵循 ON/OFF 视觉通路,结合侧向抑制从底层向上模拟 LGMD 系统。其次,运动感知的大多数计算模型仅使用 LGMD 神经元内的树突作为线性求和的理想途径,忽略了诱导神经元特性的树突效应。因此,我们通过改变树突形态参数引入 FSN 电路来模拟 LGMD 中观察到的多尺度尖峰频率适应 (SFA)。此外,我们在 FSN 中添加一个树突树电路,使其与 LGMD 神经元中的突触前前馈抑制 (FFI) 兼容,提供了一种新颖的解释和预测模型。

结果

我们测试了事件驱动的仿生视觉模型可以在不同复杂场景中实现碰撞检测和逼近选择,尤其是在快速移动的物体中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验