Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
Anesthesiology. 2024 Aug 1;141(2):338-352. doi: 10.1097/ALN.0000000000005039.
Impaired glymphatic clearance of cerebral metabolic products and fluids contribute to traumatic and ischemic brain edema and neurodegeneration in preclinical models. Glymphatic perivascular cerebrospinal fluid flow varies between anesthetics possibly due to changes in vasomotor tone and thereby in the dynamics of the periarterial cerebrospinal fluid (CSF)-containing space. To better understand the influence of anesthetics and carbon dioxide levels on CSF dynamics, this study examined the effect of periarterial size modulation on CSF distribution by changing blood carbon dioxide levels and anesthetic regimens with opposing vasomotor influences: vasoconstrictive ketamine-dexmedetomidine (K/DEX) and vasodilatory isoflurane.
End-tidal carbon dioxide (ETco2) was modulated with either supplemental inhaled carbon dioxide to reach hypercapnia (Etco2, 80 mmHg) or hyperventilation (Etco2, 20 mmHg) in tracheostomized and anesthetized female rats. Distribution of intracisternally infused radiolabeled CSF tracer 111In-diethylamine pentaacetate was assessed for 86 min in (1) normoventilated (Etco2, 40 mmHg) K/DEX; (2) normoventilated isoflurane; (3) hypercapnic K/DEX; and (4) hyperventilated isoflurane groups using dynamic whole-body single-photon emission tomography. CSF volume changes were assessed with magnetic resonance imaging.
Under normoventilation, cortical CSF tracer perfusion, perivascular space size around middle cerebral arteries, and intracranial CSF volume were higher under K/DEX compared with isoflurane (cortical maximum percentage of injected dose ratio, 2.33 [95% CI, 1.35 to 4.04]; perivascular size ratio 2.20 [95% CI, 1.09 to 4.45]; and intracranial CSF volume ratio, 1.90 [95% CI, 1.33 to 2.71]). Under isoflurane, tracer was directed to systemic circulation. Under K/DEX, the intracranial tracer distribution and CSF volume were uninfluenced by hypercapnia compared with normoventilation. Intracranial CSF tracer distribution was unaffected by hyperventilation under isoflurane despite a 28% increase in CSF volume around middle cerebral arteries.
K/DEX and isoflurane overrode carbon dioxide as a regulator of CSF flow. K/DEX could be used to preserve CSF space and dynamics in hypercapnia, whereas hyperventilation was insufficient to increase cerebral CSF perfusion under isoflurane.
在临床前模型中,脑代谢产物和液体的糖质清除功能受损会导致创伤性和缺血性脑水肿和神经退行性变。由于血管舒缩状态的变化,从而改变了含脑脊液的动脉周围空间的动力学,因此麻醉对脑周围脑脊液(CSF)的血流有影响。为了更好地了解麻醉和二氧化碳水平对 CSF 动力学的影响,本研究通过改变血液二氧化碳水平并使用具有相反血管运动影响的麻醉方案来检查动脉周围大小调节对 CSF 分布的影响:血管收缩性氯胺酮-右美托咪定(K/DEX)和血管扩张性异氟醚。
通过给予补充吸入的二氧化碳以达到高碳酸血症(Etco2,80mmHg)或过度通气(Etco2,20mmHg),在气管切开和麻醉的雌性大鼠中调节呼气末二氧化碳(ETco2)。在以下情况下评估颅内注入放射性标记 CSF 示踪剂 111In-二乙胺五乙酸后 86 分钟的 CSF 分布:(1)正常通气(Etco2,40mmHg)下的 K/DEX;(2)正常通气下的异氟醚;(3)高碳酸血症下的 K/DEX;(4)高通气下的异氟醚,使用动态全身单光子发射断层扫描。使用磁共振成像评估 CSF 体积变化。
在正常通气下,与异氟醚相比,K/DEX 下皮质 CSF 示踪剂灌注、大脑中动脉周围血管周围空间大小和颅内 CSF 体积更高(皮质最大注射剂量比,2.33 [95%CI,1.35 至 4.04];血管周围大小比,2.20 [95%CI,1.09 至 4.45];和颅内 CSF 体积比,1.90 [95%CI,1.33 至 2.71])。在异氟醚下,示踪剂被导向全身循环。在 K/DEX 下,与正常通气相比,高碳酸血症对颅内示踪剂分布和 CSF 体积没有影响。尽管大脑中动脉周围 CSF 体积增加了 28%,但异氟醚下的颅内 CSF 示踪剂分布不受过度通气的影响。
K/DEX 和异氟醚可忽略二氧化碳作为 CSF 流动的调节剂。在高碳酸血症中,K/DEX 可用于维持 CSF 空间和动力学,而在异氟醚下,过度通气不足以增加大脑 CSF 灌注。