Gao Qiao, Shen Chuanyang, Zhang Haofei, Long Bo, Truhlar Donald G
School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
Department of Chemistry, University of California, Riverside, California, 92507, USA.
Phys Chem Chem Phys. 2024 Jun 6;26(22):16160-16174. doi: 10.1039/d4cp00693c.
Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (CHCHO), pentanal (CHCHO), and butanal (CHCHO) with hydroperoxyl radical (HO) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10 cm molecule s at 298 K and 1 atm, showing that the HO reactions can be competitive with OH and NO oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO + CHCHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s. We suggest that the HO reactions make significant contributions to the sink of aldehydes.
大型醛类在大气中广泛存在,其氧化会导致二次有机气溶胶的形成。目前对其化学转化过程的认识仅限于白天的羟基自由基(OH)氧化和夜间的硝酸根自由基(NO)氧化。在此,我们报告了己醛(CH₃(CH₂)₄CHO)、戊醛(CH₃(CH₂)₃CHO)和丁醛(CH₃(CH₂)₂CHO)与氢过氧自由基(HO₂)在大气温度和压力下反应的定量动力学计算结果。我们发现,在计算这些速率常数时,隧道效应和多结构扭转非谐性均不可忽略;过渡态的强非谐性也很重要。我们发现,在298 K和1个大气压下,这三个反应的速率常数在3.2 - 7.7×10⁻¹² cm³ molecule⁻¹ s⁻¹范围内,这表明在某些与大气相关的条件下,HO₂反应可能与OH和NO氧化具有竞争力。我们的研究结果表明,HO₂引发的大型醛类氧化可能是形成高度氧化分子自氧化的原因。我们通过使用碘化物加合物飞行时间化学电离质谱仪的实验室流动管实验来补充理论研究,以证实过氧自由基和自氧化途径的理论预测。我们发现,HO₂ + CH₃(CH₂)₄CHO的加合物会发生快速的单分子1,7 - 氢转移,速率常数为0.45 s⁻¹。我们认为,HO₂反应对醛类的汇有重要贡献。