Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA.
Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA.
Int J Pharm. 2024 Jun 25;659:124253. doi: 10.1016/j.ijpharm.2024.124253. Epub 2024 May 23.
Bonding area (BA) and bonding strength (BS) interplay dictates tensile strength of a tablet and, hence, tabletability. Using a series of alkali halides with mechanical properties spanning more than one order of magnitude, the role of compaction pressure and mechanical properties on tabletability is systematically investigated and explained using the BA-BS interplay. Results reveal that BA dominates the BA-BS interplay at low pressures, where more plastic powders attain higher tensile strength due to larger BA. In contrast, BS dominates the interplay at high pressures, when difference in BA between powders is minimized. Under the typical compaction pressures of 100-300 MPa, tablet tensile strength is the highest for materials with intermediate hardness, or plasticity, due to an optimal BA-BS interplay.
结合区域(BA)和结合强度(BS)的相互作用决定了片剂的拉伸强度,因此也决定了可压性。本研究使用一系列具有跨越一个数量级以上的力学性能的碱金属卤化物,系统地研究了压缩压力和力学性能对可压性的影响,并利用 BA-BS 的相互作用进行了解释。结果表明,在低压力下,BA 主导着 BA-BS 的相互作用,因为更多的塑性粉末由于较大的 BA 而获得更高的拉伸强度。相比之下,在高压力下,BS 主导着相互作用,此时粉末之间的 BA 差异最小。在典型的 100-300 MPa 的压缩压力下,由于最佳的 BA-BS 相互作用,中等硬度或塑性材料的片剂拉伸强度最高。