Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Appl Microbiol Biotechnol. 2024 May 24;108(1):342. doi: 10.1007/s00253-024-13170-x.
Chemoautotrophic canonical ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) and complete ammonia oxidizers (comammox Nitrospira) are accountable for ammonia oxidation, which is a fundamental process of nitrification in terrestrial ecosystems. However, the relationship between autotrophic nitrification and the active nitrifying populations during N-urea incubation has not been totally clarified. The N-labeled DNA stable isotope probing (DNA-SIP) technique was utilized in order to study the response from the soil nitrification process and the active nitrifying populations, in both acidic and neutral paddy soils, to the application of urea. The presence of CH almost completely inhibited NO-N production, indicating that autotrophic ammonia oxidation was dominant in both paddy soils. N-DNA-SIP technology could effectively distinguish active nitrifying populations in both soils. The active ammonia oxidation groups in both soils were significantly different, AOA (NS (Nitrososphaerales)-Alpha, NS-Gamma, NS-Beta, NS-Delta, NS-Zeta and NT (Ca. Nitrosotaleales)-Alpha), and AOB (Nitrosospira) were functionally active in the acidic paddy soil, whereas comammox Nitrospira clade A and Nitrosospira AOB were functionally active in the neutral paddy soil. This study highlights the effective discriminative effect of N-DNA-SIP and niche differentiation of nitrifying populations in these paddy soils. KEY POINTS: • N-DNA-SIP technology could effectively distinguish active ammonia oxidizers. • Comammox Nitrospira clade A plays a lesser role than canonical ammonia oxidizers. • The active groups in the acidic and neutral paddy soils were significantly different.
化能自养氨氧化菌(氨氧化古菌(AOA)和氨氧化细菌(AOB))和全程氨氧化菌(comammox Nitrospira)负责氨氧化,这是陆地生态系统硝化作用的基本过程。然而,自养硝化作用与尿素培养过程中活性硝化种群之间的关系尚未完全阐明。本研究采用 N 标记 DNA 稳定同位素探针(DNA-SIP)技术,研究了酸性和中性稻田土壤中尿素应用对土壤硝化过程和活性硝化种群的响应。CH 的存在几乎完全抑制了 NO-N 的产生,表明在两种稻田土壤中均以自养氨氧化为主。N-DNA-SIP 技术能够有效地区分两种土壤中的活性硝化种群。两种土壤中的活性氨氧化菌群明显不同,酸性稻田土壤中的活性氨氧化菌群为 AOA(NS(硝化螺旋菌目)-Alpha、NS-Gamma、NS-Beta、NS-Delta、NS-Zeta 和 NT(Ca. 硝化螺菌目)-Alpha)和 AOB(硝化螺旋菌),而中性稻田土壤中的活性氨氧化菌群为 comammox Nitrospira 分支 A 和 Nitrosospira AOB。本研究强调了 N-DNA-SIP 在这些稻田土壤中对活性氨氧化菌的有效区分作用和硝化种群的生态位分化。
N-DNA-SIP 技术能够有效区分活性氨氧化菌。
comammox Nitrospira 分支 A 的作用小于经典氨氧化菌。
酸性和中性稻田土壤中的活性菌群有显著差异。