Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Int J Mol Sci. 2024 May 7;25(10):5073. doi: 10.3390/ijms25105073.
Photosynthesis, as the primary source of energy for all life forms, plays a crucial role in maintaining the global balance of energy, entropy, and enthalpy in living organisms. Among its various building blocks, photosystem I (PSI) is responsible for light-driven electron transfer, crucial for generating cellular reducing power. PSI acts as a light-driven plastocyanin-ferredoxin oxidoreductase and is situated in the thylakoid membranes of cyanobacteria and the chloroplasts of eukaryotic photosynthetic organisms. Comprehending the structure and function of the photosynthetic machinery is essential for understanding its mode of action. New insights are offered into the structure and function of PSI and its associated light-harvesting proteins, with a specific focus on the remarkable structural conservation of the core complex and high plasticity of the peripheral light-harvesting complexes.
光合作用作为所有生命形式的主要能量来源,在维持生物体中能量、熵和焓的全球平衡方面起着至关重要的作用。在其各种组成部分中,光系统 I(PSI)负责光驱动电子转移,对产生细胞还原能力至关重要。PSI 作为光驱动的质体蓝素-铁氧还蛋白氧化还原酶,位于蓝细菌的类囊体膜和真核光合生物的叶绿体中。理解光合作用机器的结构和功能对于理解其作用模式至关重要。本文深入探讨了 PSI 及其相关光捕获蛋白的结构和功能,特别关注核心复合物的惊人结构保守性和外围光捕获复合物的高可塑性。