Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile.
Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile.
Int J Mol Sci. 2024 May 17;25(10):5467. doi: 10.3390/ijms25105467.
In contrast to the hypothesis that aging results from cell-autonomous deterioration processes, the programmed longevity theory proposes that aging arises from a partial inactivation of a "longevity program" aimed at maintaining youthfulness in organisms. Supporting this hypothesis, age-related changes in organisms can be reversed by factors circulating in young blood. Concordantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells (htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However, the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-aging effects remain unexplored. Using experimentally validated miRNA-target gene interactions and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs modulate pathways associated with senescence and cellular stress response, targeting crucial genes such as , , and . The oligodendrocyte lineage appears to be the most responsive to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting genes such as and . Our findings support the presence of an anti-senescence mechanism triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a youthful transcriptional signature.
与衰老源自细胞自主性恶化过程的假说相反,程序性长寿理论提出,衰老是由于“长寿程序”的部分失活引起的,该程序旨在维持生物体的年轻状态。支持这一假说的是,生物体的与年龄相关的变化可以通过年轻血液中循环的因子来逆转。相应地,下丘脑神经干细胞(htNSC)分泌的外泌体 microRNAs(miRNAs)的内分泌作用通过增强年轻动物的生理适应性来调节衰老速度。然而,下丘脑来源的 miRNAs 发挥其抗衰老作用的具体分子机制仍未被探索。利用经过实验验证的 miRNA 靶基因相互作用和衰老过程中脑细胞的单细胞转录组数据,以及异体共生,我们确定了这些 miRNA 控制的主要途径以及由于 htNSC 的与年龄相关的损失和随后脑脊液(CSF)中特定 miRNA 水平下降而改变的细胞类型特异性基因网络。我们的生物信息学分析表明,这些 miRNAs 调节与衰老和细胞应激反应相关的途径,靶向关键基因,如 、 和 。少突胶质细胞谱系似乎对依赖于年龄的外泌体 miRNA 损失最为敏感,导致几个 miRNA 靶基因的显著去抑制。此外,异体共生可以逆转特定 miRNA 靶向基因的与年龄相关的上调,主要在脑内皮细胞中,包括促进衰老的基因,如 和 。我们的研究结果支持存在由 htNSC 衍生的外泌体 miRNAs 的内分泌分泌触发的抗衰老机制,该机制与年轻的转录特征相关。